1.课题概述
基于PSO粒子群优化的能源供应方,光伏发电,EV充电三方交易策略博弈算法matlab仿真。建立综合能源园区模型与市场交易框架,构建三方非合作博弈模型,通过算例分析验证模型有效性,为综合能源园区市场运营提供理论支持与实践指导。
2.系统仿真结果






3.核心程序与模型
版本:MATLAB2022a
................................................................................... Matbest = reshape(Xbest,days,[]); %商家向用户的电费报价 Muser0 = Matbest(:,1); %商家向用户的热费报价 Muser1 = Matbest(:,2); %用户向EV的电费报价 Muser2 = Matbest(:,3); Wbest = ones(1,days)/2;for i1=1:daysW0=[0:0.025:1];for i2=1:length(W0)W = Wbest;W(i1) = W0(i2);outz(i2) = func_fitness0(Muser0,Muser1,Muser2,W,i1);end[~,Ind] = max(outz); Wbest(i1) = W0(Ind); endtmps = ones(1,days)*250; %电网给充电站供能 Gpw = W.*tmps; %用户给充电站供能 Upw = (1-W).*tmps; %电网供应用户电负荷 Gld = max(Pw_load-Pw_pv+Upw,0); %电网供电功率 Pgrid = min(Gld+Gpw,500); %输出功率 Gout = Gld+Gpw; %机组供电大小 Jpw = max(Gout-Pgrid,0); %机组供热大小 Jpw2 = Jpw*1.3; %燃气供给功率 Ph = min(max(Pw_hot-Jpw2,0),500); %热网供热功率 Qgas = Ph/10; %电空调热能 Pw_hot2 = Pw_hot-Ph;figure; subplot(121); hold on; plot(Pgrid,'-b^',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.2,0.9,0.5]);plot(Ph,'-r>',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.9,0.0]);legend('电网功率','燃气功率') xlabel('时间'); ylabel('功率 kw'); axis square grid on subplot(122); plot(Gpw,'-b^',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.2,0.9,0.5]); hold on; plot(Upw,'-r>',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.9,0.0]); legend('电网给充电站供能','用户给充电站供能') xlabel('时间'); ylabel('功率 kw'); axis square grid onfigure; subplot(121); plot(Pw_pv,'-b^',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.2,0.9,0.5]); hold on; plot(Pw_load,'-r>',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.9,0.0]); hold on; legend('光伏最大出力','电负荷',''); xlabel('时间'); ylabel('功率 kw'); axis square grid onsubplot(122); plot(Pw_hot,'-b^',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.2,0.9,0.5]); legend('热负荷') xlabel('时间'); ylabel('需求 kw'); axis square grid onfigure; subplot(221); plot(Gout,'-b^',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.2,0.9,0.5]); hold on; plot(Pgrid,'-r>',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.9,0.0]); legend('园区内部供能功率','电网输出') xlabel('时间'); ylabel('功率 kw'); axis square grid onsubplot(222); plot(Jpw2+Ph,'-b^',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.2,0.9,0.5]); hold on; plot(Ph,'-r>',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.9,0.0]); legend('园区内部热输出','燃气热输出') xlabel('时间'); ylabel('功率 kw'); axis square grid onsubplot(223); plot(Pw_pv+Gld,'-b^',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.2,0.9,0.5]); hold on; plot(Pw_pv,'-r>',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.9,0.0]); legend('外部输入','光伏输出') xlabel('时间'); ylabel('需求 kw'); axis square grid onsubplot(224); plot(Pw_hot+Pw_hot2,'-b^',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.2,0.9,0.5]); hold on; plot(Pw_hot2,'-r>',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.9,0.0]); legend('外部输入热能','电空调热能') xlabel('时间'); ylabel('需求 kw'); axis square grid on 103
4.系统原理简介
全球能源危机与环境问题促使综合能源系统成为研究热点。园区综合能源系统作为底层耦合终端,其市场运营机制对能源发展和可再生能源消纳意义重大。随着电改推进,未来园区综合能源系统市场主体多元,交易行为复杂,现有研究在多能耦合市场交易方面存在不足,本文聚焦于此展开研究。
综合能源园区包含园区能量交易中心(ETC)、能源运营商、含分布式光伏的用户、EV 充电代理商。主体间通过能量管理系统(EMS)交流信息,能源运营商连接外部与内部能源网络,负责供能;含分布式光伏的用户兼具能源产消属性;EV 充电代理商管理 EV 充电,是纯电能负荷。

三方市场主体以自身利益最大化为目标。能源运营商制定能源供应价格,含分布式光伏的用户根据运营商报价制定光伏上网电价,EV 充电代理商选比两方报价制定充电策略,三方交易策略构成非合作博弈模型,经互动达纳什均衡。