题目描述
请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。
实现 LRUCache 类:
LRUCache(int capacity)以 正整数 作为容量capacity初始化 LRU 缓存int get(int key)如果关键字key存在于缓存中,则返回关键字的值,否则返回-1。void put(int key, int value)如果关键字key已经存在,则变更其数据值value;如果不存在,则向缓存中插入该组key-value。如果插入操作导致关键字数量超过capacity,则应该 逐出 最久未使用的关键字。
函数 get 和 put 必须以 O(1) 的平均时间复杂度运行。
示例:
输入
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]解释
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1); // 返回 1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2); // 返回 -1 (未找到)
lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lRUCache.get(1); // 返回 -1 (未找到)
lRUCache.get(3); // 返回 3
lRUCache.get(4); // 返回 4
提示:
1 <= capacity <= 30000 <= key <= 100000 <= value <= 105- 最多调用
2 * 105次get和put
解法一
思路:
来自官方题解。
LRU 缓存机制可以通过哈希表辅以双向链表实现,我们用一个哈希表和一个双向链表维护所有在缓存中的键值对。
-
双向链表按照被使用的顺序存储了这些键值对,靠近头部的键值对是最近使用的,而靠近尾部的键值对是最久未使用的。
-
哈希表即为普通的哈希映射(HashMap),通过缓存数据的键映射到其在双向链表中的位置。
这样以来,我们首先使用哈希表进行定位,找出缓存项在双向链表中的位置,随后将其移动到双向链表的头部,即可在 O(1) 的时间内完成 get 或者 put 操作。具体的方法如下:
对于 get 操作,首先判断 key 是否存在:
-
如果 key 不存在,则返回 −1;
-
如果 key 存在,则 key 对应的节点是最近被使用的节点。通过哈希表定位到该节点在双向链表中的位置,并将其移动到双向链表的头部,最后返回该节点的值。
对于 put 操作,首先判断 key 是否存在:
-
如果 key 不存在,使用 key 和 value 创建一个新的节点,在双向链表的头部添加该节点,并将 key 和该节点添加进哈希表中。然后判断双向链表的节点数是否超出容量,如果超出容量,则删除双向链表的尾部节点,并删除哈希表中对应的项;
-
如果 key 存在,则与 get 操作类似,先通过哈希表定位,再将对应的节点的值更新为 value,并将该节点移到双向链表的头部。
上述各项操作中,访问哈希表的时间复杂度为 O(1),在双向链表的头部添加节点、在双向链表的尾部删除节点的复杂度也为 O(1)。而将一个节点移到双向链表的头部,可以分成「删除该节点」和「在双向链表的头部添加节点」两步操作,都可以在 O(1) 时间内完成。
小贴士
在双向链表的实现中,使用一个伪头部(dummy head)和伪尾部(dummy tail)标记界限,这样在添加节点和删除节点的时候就不需要检查相邻的节点是否存在。

简化
哈希表记录节点索引,双向链表记录节点信息和插入顺序。
get操作:首先从哈希表中查看是否存在,如果存在返回节点,从中可以返回节点信息,同时在双向链表中删除节点,并在链表头创建节点,代表该节点最近被访问。
put操作:哈希表中存在相应节点,就修改节点信息,并将节点移动到链表头部,即删除该节点,然后在链表头部添加节点,表示节点最新访问。
哈希表中不存在该节点,那么就创建一个新的节点,放在链表头部并且在哈希表中添加,再判断是否超出容量
若是超出,就通过伪尾部找到最后的节点,将其删除并在哈希表中删除,否在节点数量增加。
代码:
public class LRUCache {class DLinkedNode {int key;int value;DLinkedNode prev;DLinkedNode next;public DLinkedNode() {}public DLinkedNode(int _key, int _value) {key = _key; value = _value;}}private Map<Integer, DLinkedNode> cache = new HashMap<Integer, DLinkedNode>();private int size;private int capacity;private DLinkedNode head, tail;public LRUCache(int capacity) {this.size = 0;this.capacity = capacity;// 使用伪头部和伪尾部节点head = new DLinkedNode();tail = new DLinkedNode();head.next = tail;tail.prev = head;}public int get(int key) {DLinkedNode node = cache.get(key);if (node == null) {return -1;}// 如果 key 存在,先通过哈希表定位,再移到头部moveToHead(node);return node.value;}public void put(int key, int value) {DLinkedNode node = cache.get(key);if (node == null) {// 如果 key 不存在,创建一个新的节点DLinkedNode newNode = new DLinkedNode(key, value);// 添加进哈希表cache.put(key, newNode);// 添加至双向链表的头部addToHead(newNode);++size;if (size > capacity) {// 如果超出容量,删除双向链表的尾部节点DLinkedNode tail = removeTail();// 删除哈希表中对应的项cache.remove(tail.key);--size;}}else {// 如果 key 存在,先通过哈希表定位,再修改 value,并移到头部node.value = value;moveToHead(node);}}private void addToHead(DLinkedNode node) {node.prev = head;node.next = head.next;head.next.prev = node;head.next = node;}private void removeNode(DLinkedNode node) {node.prev.next = node.next;node.next.prev = node.prev;}private void moveToHead(DLinkedNode node) {removeNode(node);addToHead(node);}private DLinkedNode removeTail() {DLinkedNode res = tail.prev;removeNode(res);return res;}
}