DeepCFD+:一种工业级 CFD 代理模型训练框架【深度学习+流体力学】 - 指南

news/2025/11/16 15:26:43/文章来源:https://www.cnblogs.com/gccbuaa/p/19228253

LGOG

适用场景:气动优化、实时仿真、多物理场代理建模、科研复现
Gitee地址:https://gitee.com/bao-jiachen/deep-cfd
GitHub地址:https://github.com/baojiachen0214/DeepCFDplus
参考论文:DeepCFD: Fast and Accurate CFD Simulation via Deep Learning

一、什么是 DeepCFD+?

在工程设计中,传统 CFD 求解器(如 OpenFOAM 的 simpleFOAM)虽精度高,但单次仿真动辄数小时,严重拖慢迭代效率。

DeepCFD+ 基于 DeepCFD 论文的思想和开源的 实验性模型,重新构建了一个工业级深度学习训练框架,能够:

更重要的是——DeepCFD+ 不只是一个模型,而是一个完整的训练系统

在这里插入图片描述
上图展示的便是一组预测 vs 真实场的对比图。


二、DeepCFD+ 的六大核心亮点

DeepCFD+ 是基于 DeepCFD 工业化升级的一套训练架构,相比于原版的项目有较大的改进与提升,尤其大幅提高了对于算力的节约。具体区别如下:

能力维度DeepCFDDeepCFD+工程价值
训练鲁棒性无早停、无检查点、中断即重训✅ 早停 + 检查点 + 自动恢复避免算力浪费,保障长周期训练
配置管理命令行传参(如 --epochs 2000 config.yaml 集中管理参数版本可控,实验可追溯
模型扩展需修改主脚本硬编码分支 插件式注册,YAML 配置驱动新模型 5 分钟集成,零侵入
可视化手动调用 plot_results() 自动绘制 loss 曲线 + 预测场对比图实时监控训练质量
日志与调试仅 stdout 输出 结构化日志 + 异常捕获快速定位问题,支持远程监控
可复现性未固定随机种子 固定种子 + 环境快照实验结果 100% 可复现
代码结构所有逻辑塞进 DeepCFD.py模型 / 训练 / 工具 / 配置分离高内聚低耦合,团队协作友好

核心理念:DeepCFD 是“Proof of Concept”,DeepCFD+ 是“Production Ready”。


1️⃣ 工业级训练机制:稳如磐石

项目完整结构如下:

DeepCFD+/
├── Models/              # 纯模型定义(无训练逻辑)
├── Lib/train_model.py   # 封装 ModelTrainer 类,含完整训练流程
├── config.yaml          # 所有超参集中配置
└── main.py              # 极简入口:加载配置 → 启动训练

对比原始 DeepCFD:后者无检查点、无早停,训练中断即前功尽弃。


2️⃣ 模块化模型架构:灵活扩展

DeepCFD+ 内置多种模型:

  • UNet.py:标准 U-Net
  • UNetEx.py:论文推荐的扩展 U-Net(默认)
  • AutoEncoder.py:编码器-解码器结构

所有模型均通过 YAML 配置驱动,无需修改代码即可切换。

# config.yaml
models:
UNetEx:
lr: 0.001
batch_size: 64
epochs: 1000
patience: 25

更支持自定义模型:只需新建 .py 文件 + YAML 配置,5 分钟集成!


3️⃣ 自动化可视化:训练过程一目了然

训练过程中,DeepCFD+ 自动:

  • 绘制 训练/验证损失曲线
  • 生成 预测 vs 真实场对比图 以及不同模型之间的性能对比热力图
  • 保存结果至 results/ 目录

下图展示的便是某 epoch 中四个模型在全场速度与压力(Ux, Uy, p)这三个方面的误差对比,可以直观看出模型在这一训练阶段的好坏:

性能对比热力图

无需手动调用绘图函数,告别“黑盒训练”。


4️⃣ 配置驱动开发:实验可追溯、可复现

所有超参数集中管理于 config.yaml,包括:

优势:配置即实验记录,版本可控,团队协作无冲突。


5️⃣ 完善的工程保障

  • 固定随机种子:确保实验 100% 可复现
  • 结构化日志系统:记录训练状态、指标、异常信息
  • 异常处理机制:捕获 CUDA OOM、数据损坏等常见错误
  • GPU 资源优化:自动检测设备,合理分配内存

6️⃣ 兼容官方数据集,开箱即用

完全兼容原版 DeepCFD 提供的 数据集(981 个通道流样本):

可直接用于训练、验证、测试。


三、操作指南:5 分钟跑通训练

1️⃣ 安装依赖

git clone https://gitee.com/bao-jiachen/deep-cfd.git
cd deep-cfd
pip install -r requirements.txt

2️⃣ 准备数据

下载官方数据集:

wget https://zenodo.org/record/3666056/files/DeepCFD.zip?download=1 -O DeepCFD.zip
unzip DeepCFD.zip
mv DeepCFD/dataX.pkl Data/
mv DeepCFD/dataY.pkl Data/

数据将自动被 main.py 识别。

3️⃣ 启动训练

python main.py

默认使用 UNetEx 模型,按 config.yaml 中的配置训练。

4️⃣ 查看结果

训练完成后,你将获得:

  • checkpoints/best_model.pt:最佳模型(按验证损失保存)
  • logs/training.log:结构化训练日志
  • results/prediction_*.png:预测 vs 真实场对比图

四、如何添加自定义模型?

添加自定义模型需要在三个地方进行配置:

1️⃣ 创建模型文件

Models/ 目录下创建你的模型文件,例如 MyCustomModel.py

import torch
import torch.nn as nn
class MyCustomModel(nn.Module):
def __init__(self, in_channels, out_channels, **kwargs):
super(MyCustomModel, self).__init__()
# 实现你的模型结构
self.model = nn.Sequential(
nn.Conv2d(in_channels, 64, 3, padding=1),
nn.ReLU(),
nn.Conv2d(64, out_channels, 3, padding=1)
)
def forward(self, x):
return self.model(x)

2️⃣ 在 main.py 中注册模型

打开 main.py 文件,在模型导入部分添加:

# 在文件开头导入你的模型
from Models.MyCustomModel import MyCustomModel

然后在 ModelTrainer.create_model() 方法中添加模型配置代码:

elif self.model_name == "MyCustomModel":
# 获取配置参数
lr = self.kwargs.get('lr', 0.001)
batch_size = self.kwargs.get('batch_size', 64)
# 创建模型实例
self.model = MyCustomModel(3, 3)  # 根据需要调整输入输出通道数
# 设置优化器
self.optimizer = torch.optim.AdamW(self.model.parameters(), lr=lr)
# 设置损失函数
self.loss_func = self.unet_loss_func  # 可以使用现有的或自定义的
# 设置训练参数
self.batch_size = batch_size

3️⃣ 在 config.yaml 中添加配置

config.yaml 文件的 models 部分添加你的模型配置:

models:
MyCustomModel:
lr: 0.001
batch_size: 64
epochs: 1000
# 其他模型特定参数

4️⃣ 运行训练

完成以上步骤后,运行 python main.py,框架会根据配置文件自动训练你的模型!

支持自定义损失函数、评估指标、数据预处理逻辑。


四、引用与致谢

本项目基于:

如用于科研,请引用原始论文。


五、开源协议

MIT License —— 免费用于学术与商业项目。


六、结语

DeepCFD+ 不仅复现了 DeepCFD 的强大能力,更将其从科研脚本升级为工业级训练框架。无论你是:

DeepCFD+ 都是你值得信赖的起点

Gitee地址:https://gitee.com/bao-jiachen/deep-cfd
GitHub地址:https://github.com/baojiachen0214/DeepCFDplus

欢迎 Star & 提 Issue!让 CFD 仿真真正“飞”起来!

作者谈:笔者是 DeepCFD+ 开发者,也是一名普通本科生,难免会出现一些低级的 bug,如果你在使用过程中遇到了问题,欢迎与我联系~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/967126.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于Qt实现的窗口半透明流动背景

背景基于c++ & Qt实现的半透明渐变色窗口背景先看效果 (gif录制掉帧,请自行编译源码查看,效果比gif流畅)完整源码 GradientWidget.h #ifndef GRADIENTWIDGET_H #define GRADIENTWIDGET_H#include <QWidget&…

2025河南郑州锅炉设备/改造/安装/维修最新TOP5推荐:质造升级驱动产业新发展,河南中原地区优选

随着工业智能化转型加速,锅炉设备作为能源转化核心装备,其技术创新与安全效能成为企业选型的关键指标。本榜单基于资质认证、技术实力、服务体系三大维度,结合河南省特种设备检测研究院2024年度数据及行业用户调研反…

2025年11月冷媒剂厂家推荐榜:五家主流品牌综合对比与评价

进入2025年冬季,工业制冷、冷链物流、新能源电池热管理、数据中心温控等场景对冷媒剂的采购需求集中释放。用户普遍面临“低温不凝固、金属不腐蚀、能耗不飙升”的三重痛点,同时需要兼顾《危险化学品目录》最新调整、…

2025年11月防冻液厂家推荐榜:权威评测五强对比一览

进入供暖季前,工业循环冷却系统、空气能热泵、数据中心温控、冷链物流及新能源汽车热管理场景都会集中检查或更换防冻液。用户通常面临“冰点是否够低、金属缓蚀是否可靠、环保认证是否齐全、批量供货是否稳定”四大痛…

2025年11月防冻液厂家对比榜:五强性能数据与资质验证全记录

入冬在即,北方工业循环冷却系统、空气能热泵、数据中心温控管路陆续进入低温运行期,防冻液一旦选型失误,轻则机组停机,重则换热器冻裂、停产检修。过去两周,我接到最多的咨询是:“市面上防冻液厂家宣传相似,到底…

steam营销分析

观点来自:https://www.youtube.com/watch?v=uPOSZ_jhCaw&t=645s一.参加游戏节,需要订阅chirs的频道游戏节,新品节,会带来大量的流量由一些第三方公司举办,比如 方块游戏(皖新文化科技有限公司) 举办过,古…

2025年11月冷媒剂厂家评测榜:从资质到应用全场景解析

把冷媒剂选错一次,代价可能是整套制冷系统停机、货物变质、甚至安全事故。11月北方已进入供暖与冷链高负荷期,南方食品、医药、数据中心项目也在冲刺年底交付,用户此刻找厂家,最在意的是“现货快不快、资质全不全、…

心情助手3.07正式版,吃喝镇

心情助手3.07正式版,吃喝镇心情助手3.07正式版,吃喝镇下载地址: 心情助手3.07正式版.exe: https://url24.ctfile.com/f/17568224-971274511-54c9f2?p=8187 (访问密码: 8187)

在ec2上部署Qwen2.5omini和Qwen3omini模型

参考资料https://github.com/QwenLM/Qwen3-Omnihttps://qwen.ai/blog?id=65f766fc2dcba7905c1cb69cc4cab90e94126bf4&from=research.latest-advancements-list模型测评,https://www.bilibili.com/video/BV16SJyz…

分布式计算通信原语的抽象模型

学习深度神经网络并行策略时,常常混淆各种通信原语 Reduce/Scatter/Gather ... 本文尝试给出一种统一的抽象模型,将各类原语看作模型下一种个例。尝试简单调研并行计算理论,暂时没有找到完全一致对应的理论术语,故…

【shell】每日shell练习:安全日志入侵检测/专业的系统配置文件合规检查

pre { white-space: pre !important; word-wrap: normal !important; overflow-x: auto !important; display: block !important; font-family: "Consolas", "Monaco", "Courier New", …

2025年第39周数字取证与事件响应技术动态

本周技术动态涵盖Salesloft-Drift入侵事件分析、SaaS供应链安全、恶意软件检测技术、数字取证新方法、威胁狩猎实践、漏洞利用分析等网络安全前沿技术内容,为安全专业人员提供全面技术参考。赞助内容 Salesloft-Drift…

第三次算法作业

动态规划法求解步骤​ (1)状态定义​:设 dp[i][j] 表示从第 i 行第 j 列元素出发,到达三角形底部的最大路径和。该定义精准捕捉了子问题的核心:每个位置的最优解仅依赖其下方的子问题结果。​ (2)递归方程式推导…

milvus: 搜索collection

一,代码:from flask import Blueprint,jsonify,render_template,requestfrom app import milvus_client from pymilvus import FieldSchema, DataType, CollectionSchema, Collection, connections from helpers.uti…

2025/11/16

2025/11/16学习算法

实用指南:《vector.pdf 深度解读:vector 核心接口、扩容机制与迭代器失效解决方案》

pre { white-space: pre !important; word-wrap: normal !important; overflow-x: auto !important; display: block !important; font-family: "Consolas", "Monaco", "Courier New", …

【MX-S11】梦熊 NOIP 2025 模拟赛 3 WAOI R7 FeOI R6.5(同步赛)总结分析

感觉打梦熊就是这样前两题都是中等偏下,后两题难得不成样子。 估分&最终得分:\(100+100+0+0=200\)。 T1 感觉应该是黄题吧。 题目概述 一个数轴,前 \(k\) 个地给小 \(A\),后面的地给小 \(B\),小 \(A\) 先手,…

2025 年 11 月旅游船厂家推荐排行榜,新能源电动旅游船,画舫仿古双层豪华旅游船,定制旅游船,玻璃钢钢质铝合金旅游船公司精选

2025 年 11 月旅游船厂家推荐排行榜,新能源电动旅游船,画舫仿古双层豪华旅游船,定制旅游船,玻璃钢钢质铝合金旅游船公司精选 随着国内水上旅游市场的快速发展,旅游船行业正迎来新一轮技术变革与产品升级。从传统观…

2025 年 11 月观光船厂家推荐排行榜,新能源观光船,电动观光船,画舫观光船,仿古观光船,双层观光船,豪华观光船,定制观光船,玻璃钢观光船,钢质观光船,铝合金观光船公司推荐

2025 年 11 月观光船厂家推荐排行榜:新能源与电动观光船品牌权威指南 行业背景与发展趋势 观光船行业作为水上旅游产业的重要组成部分,近年来呈现出多元化、环保化、定制化的发展趋势。随着新能源技术的不断成熟和环…

[Win] [ffmpeg] Win下如何安装ffmpeg

[Win] [ffmpeg] Win下如何安装ffmpeg$(".postTitle2").removeClass("postTitle2").addClass("singleposttitle");目录01 ffmpeg简介02 安装流程2.1 安装chocolately2.2 choco安装ffmpeg…