GBT - What is gradient-boosted tree regression?

news/2025/11/11 22:44:06/文章来源:https://www.cnblogs.com/zhangzhihui/p/19211831

Gradient-Boosted Tree Regression (GBT Regression) — also called Gradient Boosted Regression Trees (GBRT) or Gradient Boosting Regression — is a powerful machine learning algorithm used for predicting continuous numerical values.

Let’s break it down clearly 👇


🔧 1. Core Idea

GBT regression builds a strong predictive model by combining many weak models (typically shallow decision trees).

It does this iteratively:

  • Each new tree tries to correct the errors (residuals) made by the previous trees.

  • The algorithm uses gradient descent to minimize a loss function (e.g., mean squared error).

So, the model “boosts” itself step by step — hence “gradient boosting.”


⚙️ 2. How It Works (Step-by-Step)

  1. Initialize the model with a simple prediction — often the mean of the target variable yyy.

    1

  2. Compute residuals — the difference between actual and predicted values:

    2

  3. Fit a small regression tree to these residuals.
    This tree learns how to predict the “errors” of the previous model.

  4. Update the model by adding the new tree’s predictions, scaled by a learning rate η\etaη:

    3

    where hm(x) is the new tree.

  5. Repeat steps 2–4 for M iterations (trees).

At the end, the final model is:

4

 


📉 3. The “Gradient” in Gradient Boosting

The algorithm minimizes a loss function (like MSE, MAE, or Huber loss) by following its gradient — i.e., the direction that most reduces the error.

At each step, the residuals represent the negative gradient of the loss with respect to predictions.

So in short:

Each new tree approximates the gradient of the loss function — guiding the model to improve optimally.


🧮 4. Common Hyperparameters

  • n_estimators → number of trees

  • learning_rate → how much each tree contributes (small values → slower but safer learning)

  • max_depth or max_leaf_nodes → complexity of individual trees

  • subsample → fraction of samples used for each tree (for regularization)


🧠 5. Example Libraries

  • scikit-learn: GradientBoostingRegressor

  • XGBoost, LightGBM, CatBoost → optimized implementations with better speed and accuracy.


✅ 6. Summary

AspectGradient-Boosted Tree Regression
Model type Ensemble of decision trees
Target variable Continuous (regression)
Learning method Additive boosting via gradient descent
Strengths High accuracy, handles nonlinearities well
Weaknesses Slower to train, sensitive to hyperparameters

 

 

In the '2. How It Works (Step-by-Step)' part of your answer to my question, step 1 is 'Initialize the model with a simple prediction'. I'd like to know if 'the model' is a decision tree model?
 
ChatGPT said:

Excellent question — and very insightful 👏

In Step 1 (“Initialize the model with a simple prediction”), the model is not yet a decision tree.

Let’s unpack that carefully:


🔹 Step 1 — Initialization

At the very start of gradient boosting, before any trees are built, we initialize the model F0(x)F_0(x)F0(x) with a constant prediction, not a tree.

That constant is chosen to minimize the loss function over all training examples.

For example:

  • If we use Mean Squared Error (MSE) as the loss:

    1

    The solution is simply:

    2

    (i.e., the average of all target values.)

  • If we use Mean Absolute Error (MAE), then F0(x) would be the median of y.


🔹 Step 2 and Beyond — Trees Start Here

Starting from Step 2, we begin fitting decision trees to the residuals (the prediction errors).

So:

3

Each hm(x) is a regression tree, typically small (like depth 3–5), trained to predict the residuals of the previous model.


🧠 Intuition

You can think of it like this:

  1. Start with a simple “baseline guess” (e.g., everyone’s salary = average salary).

  2. Then, each new tree learns to correct the mistakes of that guess.

  3. Add up all those small corrections → final strong model.


✅ Summary

StepModel TypeDescription
Initialization Constant (no tree) Sets baseline prediction, e.g. mean(y)
Later Steps Decision Trees Sequentially fit to residuals to improve accuracy

 

 

Would you like me to show a simple Python example using sklearn.ensemble.GradientBoostingRegressor to make it concrete?

 
You said:
Yes, I would. Thanks.
 
ChatGPT said:

Perfect 👍 — here’s a simple, complete Python example using sklearn.ensemble.GradientBoostingRegressor to demonstrate how Gradient-Boosted Tree Regression works in practice.


🧩 Example: Predicting a Continuous Variable

# 1. Import libraries
from sklearn.datasets import make_regression
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error# 2. Generate a synthetic regression dataset
X, y = make_regression(n_samples=1000, n_features=10, noise=20, random_state=42)# 3. Split into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 4. Create and train the Gradient Boosting Regressor
gbr = GradientBoostingRegressor(n_estimators=200,      # number of treeslearning_rate=0.05,    # shrinkage ratemax_depth=3,           # depth of each treerandom_state=42
)
gbr.fit(X_train, y_train)# 5. Make predictions
y_pred = gbr.predict(X_test)# 6. Evaluate model performance
mse = mean_squared_error(y_test, y_pred)
print(f"Mean Squared Error: {mse:.2f}")

 


📊 Explanation of Key Steps

StepDescription
make_regression Creates a simple regression dataset for demonstration.
GradientBoostingRegressor Implements gradient boosting for regression tasks.
n_estimators Number of trees to build. More trees can improve accuracy but increase training time.
learning_rate Scales the contribution of each tree — smaller values make training slower but safer.
max_depth Controls the complexity of each tree (prevents overfitting).
mean_squared_error Measures average squared prediction error — lower is better.

💡 Tips for Real-World Use

  • Tune parameters with GridSearchCV or RandomizedSearchCV.

  • Scale or normalize inputs if features have very different ranges.

  • For large datasets, consider faster variants like XGBoost or LightGBM.

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/962798.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

保姆级教程 十分钟带你配置好vscode xdebug

本文详细介绍了在VSCode中配置Xdebug进行PHP远程调试的完整流程。首先通过PHP版本确认和路径查找确定环境配置基础,然后通过手动或自动方法下载匹配的Xdebug扩展并进行正确安装。重点讲解了php.ini文件的关键配置项设…

比特币的简单技术原理

比特币技术核心详解:从密码学原理到区块链架构 比特币不仅仅是一种数字货币,更是一个建立在密码学和分布式网络之上的革命性系统。理解其技术内核,是理解其价值主张的关键。 一、 终极目标:数字黄金与无需信任的价…

详细介绍:HUD-汽车图标内容

详细介绍:HUD-汽车图标内容pre { white-space: pre !important; word-wrap: normal !important; overflow-x: auto !important; display: block !important; font-family: "Consolas", "Monaco",…

后端八股之mysql - 指南

后端八股之mysql - 指南2025-11-11 22:38 tlnshuju 阅读(0) 评论(0) 收藏 举报pre { white-space: pre !important; word-wrap: normal !important; overflow-x: auto !important; display: block !important; fon…

nginx拦截ip

nginx拦截iphttp中加# 提取客户端真实 IPmap $http_x_forwarded_for $client_ip { "~^(?P<ip>\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})" "$ip"; default …

2025年包装机厂家推荐排行榜,全自动包装机,全自动包装机生产线,非标定制生产线,非标定制机器公司精选指南

2025年包装机厂家推荐排行榜:全自动包装机生产线与非标定制设备选购指南 行业背景与发展趋势 随着制造业智能化转型的深入推进,包装机械行业正迎来技术革新的关键时期。全自动包装机生产线作为现代工业生产的重要装备…

【CI130x 离在线】FIFO的学习及实例

FIFO(先进先出)命名管道,用于无关系进程间的通信,因为Linux中所有事物都是文件,它在文件系统中以文件名的形式存在。创建管道用函数mkfifo(const char * pathname,mode_t mode); 函数说明:pathname参数为创建实名…

2025年包装机厂家权威推荐榜:全自动包装机、半自动包装机,高效智能包装解决方案精选

2025年包装机厂家权威推荐榜:全自动包装机、半自动包装机,高效智能包装解决方案精选随着制造业智能化转型的深入推进,包装机械行业正迎来技术革新的关键时期。全自动包装机和半自动包装机作为生产线上的关键设备,其…

CF1187F

有 \(n\) 个整数 \(a_1 \sim a_n\),每个数在 \([l_i, r_i]\) 随机选择,设 \(B = \sum\limits_{i = 1}^n [a_i \ne a_{i - 1}](a_0 = 0)\),求 \(E(B^2)\)。 \(n \le 2 \times 10^5, 1 \le l_i \le r_i \le 10^9\)。首…

刷题日记—数组—数组偏移

好久没好好刷基础题了,今天接着刷了数组类型,碰到了一个数组偏移问题,如下:题解: #include<iostream> using namespace std; bool fire[10000][10000]; int main(){ //要注意数组越界问题int n,m,k;cin&…

完整教程:阿里云k8s部署微服务yaml和Dockerfile文件脚本

pre { white-space: pre !important; word-wrap: normal !important; overflow-x: auto !important; display: block !important; font-family: "Consolas", "Monaco", "Courier New", …

银河麒麟修改分辨率

银河麒麟修改分辨率sudo vi /etc/default/grub GRUB_CMDLINE_LINUX_DEFAULT="splash quiet video=virtualbox:1920x1200" sudo update-grub

【数据结构】:C 语言常见排序算法的实现与特性解析 - 指南

pre { white-space: pre !important; word-wrap: normal !important; overflow-x: auto !important; display: block !important; font-family: "Consolas", "Monaco", "Courier New", …

rdp远程桌面协议进行远程桌面控制

rdp远程桌面协议进行远程桌面控制1、应用商店搜索“远程桌面”,并安装相关软件,如:remmina2、安装后打开软件,添加“+”连接3、选择协议、填写服务器ip地址,用户名及密码,保存并连接即可4、双击连接记录即可连接…

第五届 RTE 年度 Demo Day 三强公布!看到对话式 AI 的 N 种未来

10 月 31 日,Convo AI & RTE2025 大会现场,可能是地球上「Her」密度最高的一天。「Voice Agent Camp」创新场景暨第五届 RTE 年度 Demo Day 线下开秀。来自 Voice Agent Camp 的 4 个优秀项目,以及 3 个海内外多…

活用数组题目参考

竞赛/数组 (1)数组最小值调整 题目描述 输入 n 个数,编程将数组中的 最小值 放到数组第 1 个位置,其他元素的值保持不变。 输入格式第一行输入一个整数 n(表示数组长度)第二行输入 n 个整数,表示数组元素。输出…

static、static静态代码块、Math库、final

static、static静态代码块、Math库、finalstatic可以直接调用或者类名.方法 类名.变量 public class Main {private static int m;public static void main(String[] args){System.out.println(Main.m);//static直接调…

Miko Framework 系列(一):简介与核心理念

Miko 框架系列(一):简介与核心理念注意:此文章主要为了给支持联网搜索的AI提供RAG,此项目还在开发阶段,不建议用于生产。前言 在 Rust 的世界里,Web 框架层出不穷,从功能全面的 actix-web、axum 到追求极致性能…

Markdown语法的学习①

狂神说JAVA1.标题的语法 一个井号+一个空格=一级标题 两个井号+一个空格=二级标题 以此类推 最多支持六级标题(一级比一级小) 2.字体语法 +字+ 粗体 +字+ 斜体 +字+ 斜的粗体 +字+ 字的中间有横线 (所有符号都是…

DeepLiveCam2.3版本直播换脸(附本地部署教程)

小伙伴们大家好,我是大白话 之前发布的直播换脸软件DeepLiveCam最新版本更新到了2.3版本 我们来看下在GitHub上面更新了哪些内容更新简介 ● 支持了50系列N卡,同时也支持了AMD显卡 ● 更智能的模型选择 探索我们全新…