P13.torchvision中的数据集使用
13.1Transforms中的类
1.打开pytorch官网
2.找到CIFAR10,这个数据集比较小

3.点击图片上红色的CIFAR10


4.这里的链接就是Pycharm下载到dataset里面的东西


13.2CIFAR10数据集的下载与导入
1.在Pycharm下载,下载到dataset

2.下载成功的成果

13.3打印输出,查看test_set的构成(img,target)和它的classes
点击查看代码
import torchvision
from torch.utils.tensorboard import SummaryWritertrain_set = torchvision.datasets.CIFAR10(root="./dataset",train=True,download=True)
test_set = torchvision.datasets.CIFAR10(root="./dataset",train=False,download=True)#多行注释:Ctrl+/
print(test_set[0])  #test_set[i]是由img,target构成的  target是类别
print(test_set.classes)
img,target = test_set[0]
print(img)
print(target)
print(test_set.classes[target])
点击查看代码
D:\anaconda3\envs\pytorch\python.exe D:/DeepLearning/Learn_torch/P13_dataset_transform.py
Files already downloaded and verified
Files already downloaded and verified
(<PIL.Image.Image image mode=RGB size=32x32 at 0x1F81317A880>, 3)
['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
<PIL.Image.Image image mode=RGB size=32x32 at 0x1F81317A8E0>
3
cat进程已结束,退出代码0
点击查看代码
原始PIL类型转换成tensor数据类型
dataset_transform = torchvision.transforms.Compose([torchvision.transforms.ToTensor()]
)
点击查看代码
#将以上transforms的totensor应用到CIFAR10的每一张图片
train_set = torchvision.datasets.CIFAR10(root="./dataset",transform=dataset_transform,train=True,download=True)
test_set = torchvision.datasets.CIFAR10(root="./dataset",transform=dataset_transform,train=False,download=True)

3.写入日志文件“p10”,将数据集导入到tensorboard进行显示
点击查看代码
writer = SummaryWriter("P13")
for i in range(10):img,target = test_set[i]writer.add_image("test_set",img,i)#i:global_step(一个整数,通常表示训练的步数或者迭代次数等,用于在记录多张图像时区分不同阶段的图像)
writer.close()
点击查看代码
D:\anaconda3\envs\pytorch\python.exe D:/DeepLearning/Learn_torch/P13_dataset_transform.py
Files already downloaded and verified
Files already downloaded and verified进程已结束,退出代码0

4.在终端中打开
tensorboard --logdir=D:\DeepLearning\Learn_torch\P13

5.点击网址

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/956009.shtml
如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!