enthalpy/entropy

news/2025/10/5 3:08:14/文章来源:https://www.cnblogs.com/qianxinn/p/19126165

Алексей Экимов — единственный россиянин, получивший Нобелевскую премию по химии в 2023 году за технологии нанокристаллического кремния в американской компании.
Let's talk about some physics/problems. you! ED to be silent.

dependent variables

  • [\(R](gas\ constant) = N_A k = 8.314462618 J/(mol·K)\)
  • [\(v](speed)m/s\)
  • [\(a](acceleration)= v / T = m/s^2\)
  • [\(F](force) = ma = Ma = kg\cdot m / s^2 \equiv N\)
  • [\(W] = Fd = N \cdot m = kg\cdot m^2/ s^2 \equiv J\)

Physical

\[W=∫Path​δW \]

\[∫_Γ​δW=∫_Γ​P(V,T)dV \]

\(δ/‌đ‌\) means path-dependent, which is an "Inexact differential".

Formulas

  • H = U + pV

\[kg\cdot m^2 / s^2 + \frac{kg\cdot m / s^2}{m^2} \cdot m^3 = kg\cdot m^2 / s^2 ≡ J \]

We care J/mol.

  • S = U + pV
    \(dS = \frac{δQ_{rev}}{T}\)
    \(S = k_B ln \Omega\)
    \(dS_{isolated}​≥0\)
    the Boltzmann constant k is 1.380 649 x 10–23 J/K, Ω = microstates

1. The State Space: A Differentiable Manifold

The foundation is the concept of a state space.

  • Mathematical Definition: The set of all possible equilibrium states of a thermodynamic system forms a differentiable manifold, ( \mathcal{M} ).
  • Interpretation: A manifold is a space that locally looks like ( \mathbb{R}^n ). Each point ( p \in \mathcal{M} ) represents a unique equilibrium state of the system (e.g., specified by coordinates like pressure ( P ), volume ( V ), and temperature ( T ), which are related by an equation of state).
  • Coordinates: We can describe points on this manifold using coordinate functions. For a simple gas, a common coordinate chart is ( (P, V) ), or ( (T, V) ), etc. The number of coordinates needed is the number of degrees of freedom.

2. State Functions: Differential 0-Forms

  • Mathematical Definition: A state function is a smooth map (a scalar field) from the manifold to the real numbers:
    [
    F: \mathcal{M} \to \mathbb{R}
    ]
  • Interpretation: It assigns a number (e.g., internal energy ( U ), entropy ( S )) to every state ( p \in \mathcal{M} ), regardless of how the system arrived at that state.
  • Differential: The differential of a state function is its exterior derivative, denoted ( dF ). This is a differential 1-form.
    • In coordinates ( (x^1, x^2) ) (e.g., ( (T, V) )), it is expressed as:
      [
      dF = \frac{\partial F}{\partial x1}dx1 + \frac{\partial F}{\partial x2}dx2
      ]
    • Key Property (Exactness): The 1-form ( dF ) is called an exact differential. By definition, the exterior derivative of a 0-form is always exact. A fundamental property is that the second exterior derivative vanishes:
      [
      d(dF) = 0
      ]
      This is equivalent to the Clairaut-Schwarz theorem (symmetry of second partial derivatives).

3. Path-Dependent Quantities: Differential 1-Forms

  • Mathematical Definition: Path-dependent quantities like infinitesimal work (( \delta W )) and heat (( \delta Q )) are mathematically represented as differential 1-forms on ( \mathcal{M} ), which are not exact.
  • Notation: We use ( \delta ) or ( d ) with a slash (( \not d )) to emphasize that they are not the differential of any state function. Let's denote such a general 1-form as ( \omega ).
    [
    \omega = M_i dx^i
    ]
    (Using Einstein summation notation).
  • Interpretation: A 1-form is an object that can be integrated along a path (curve). The result of the integral ( \int_\gamma \omega ) depends on the path ( \gamma ), not just its endpoints. This captures the essence of path-dependence.

4. The Fundamental Dichotomy: Exact vs. Closed Forms

This is the core of the mathematical rigor.

  • Exact Form: A 1-form ( \omega ) is exact if there exists a 0-form (state function) ( F ) such that:
    [
    \omega = dF
    ]

  • Closed Form: A 1-form ( \omega ) is closed if its exterior derivative is zero:
    [
    d\omega = 0
    ]
    In coordinates, for ( \omega = M dx + N dy ), this means:
    [
    d\omega = \left( \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx \wedge dy = 0 \quad \Rightarrow \quad \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}
    ]
    This is the integrability condition.

  • The Deep Mathematical Result (Poincaré Lemma):

    • Every exact form is closed. (If ( \omega = dF ), then ( d\omega = d(dF) = 0 )).
    • On a simply connected manifold, every closed form is exact.
    • Conclusion: On the state space of thermodynamics (which is typically contractible and hence simply connected), the concepts of closed and exact are equivalent.

This gives us a powerful test:

A 1-form ( \omega ) is a state function differential (i.e., ( \omega = dF )) if and only if it is closed (( d\omega = 0 )).


5. Application to Thermodynamics

Let's apply this formalism to the first law.

  • The First Law as a Geometry Statement:
    [
    dU = \delta Q - \delta W
    ]
    Here, ( dU ) is an exact 1-form (it's the differential of the state function ( U )). The right-hand side is a sum of two 1-forms that are individually not exact.

  • Work 1-Form (( \delta W )):
    For a simple hydrostatic system, ( \delta W = P dV ).
    Let's test if it's closed:
    [
    \omega_W = P dV \quad \text{(Consider coordinates } (T, V) \text{)}
    ]
    [
    d\omega_W = dP \wedge dV = \left( \frac{\partial P}{\partial T} dT + \frac{\partial P}{\partial V} dV \right) \wedge dV = \frac{\partial P}{\partial T} dT \wedge dV
    ]
    Since ( \frac{\partial P}{\partial T} ) is generally not zero (e.g., in an ideal gas, ( P = nRT/V ), so ( \partial P/\partial T = nR/V \neq 0 )), we have ( d\omega_W \neq 0 ). Therefore, ( \omega_W ) is not closed, and hence not exact. Its integral ( W = \int \delta W ) is path-dependent.

  • Heat 1-Form (( \delta Q )):
    From the first law, ( \delta Q = dU + \delta W = dU + P dV ).
    Let's test if it's closed:
    [
    d(\delta Q) = d(dU + P dV) = d(dU) + d(P dV) = 0 + d\omega_W \neq 0
    ]
    So ( \delta Q ) is also not closed and not exact. Its integral ( Q = \int \delta Q ) is path-dependent.

  • Entropy and the Second Law:
    The second law postulates the existence of an integrating factor ( \frac{1}{T} ) for the heat 1-form ( \delta Q ). Mathematically, this means:
    [
    dS = \frac{1}{T} \delta Q
    ]
    Here, ( \frac{1}{T} ) is the integrating factor that converts the inexact 1-form ( \delta Q ) into an exact 1-form ( dS ), where ( S ) is the state function entropy. This is a profound geometric result: it says that while "heat" is not a property of a state, "heat divided by temperature" is.


Summary in Mathematical Language

Concept Thermodynamics Differential Geometry
System State Equilibrium State Point ( p ) on a manifold ( \mathcal{M} )
State Function ( F ) (e.g., ( U, S )) Differential 0-form ( F: \mathcal{M} \to \mathbb{R} )
Infinitesimal Change ( dF ) (exact differential) Exact 1-form ( \omega = dF )
Path-Dependent Qty ( \delta W, \delta Q ) Inexact 1-form ( \omega ), where ( d\omega \neq 0 )
Test for State Function Path integral ( \oint dF = 0 ) Closedness: ( d\omega = 0 ) ( \iff ) ( \omega ) is exact (on simply connected ( \mathcal{M} ))
First Law ( dU = \delta Q - \delta W ) An exact 1-form equals a sum of inexact 1-forms.
Second Law ( dS = \frac{\delta Q_{rev}}{T} ) The 1-form ( \delta Q ) admits an integrating factor ( 1/T ), making it exact.

This geometric perspective reveals thermodynamics as the physics of differential forms on the state space manifold, where the laws of thermodynamics are constraints on which forms are exact and which are not.

There are no choices about the readers of .
There are no choices about the position of .
There are no choices about fate, destiny. There's no inner feeling because people won't talk.

There are no choices. Because people will choose to live for not the inner speech and destiny.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/927815.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Day26自定义异常

package Demo2; //自定义异常类 public class Myexception extends Exception {//传递数字>10private int detail;public Myexception(int a) {this.detail = a;}//重写toString打印异常信息@Overridepublic String…

重庆潼南网站建设公司wordpress浏览次数插件

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:MySQL中TEXT数据类型的最大长度 在MySQL中,TEXT数据类型用于存储较大…

科技公司手机端网站定制网站建设功能报价表模板

iMazing是一款功能强大的iPhone和iPad管理工具,确实可以作为iTunes的替代品进行数据备份。以下是一些关于iMazing的主要特点和功能: 设备备份:iMazing可以备份iOS设备上的所有数据,包括照片、视频、音乐、应用程序等。与iTunes相比…

谈谈redis的热key问题如何解决

引言 讲了几天的数据库系列的文章,大家一定看烦了,其实还没讲完。。。(以下省略一万字)。 今天我们换换口味,来写redis方面的内容,谈谈热key问题如何解决。 其实热key问题说来也很简单,就是瞬间有几十万的请求去访…

Microsoft Agent Framework (预览) 入门:让所有的开发者轻松创建 AI Agents

Microsoft Agent Framework (预览) 入门:让所有的开发者轻松创建 AI Agents翻译:https://devblogs.microsoft.com/dotnet/introducing-microsoft-agent-framework-preview/ 构建 AI 代理并非难事。然而,许多开发者却…

公益网站怎么做网站诊断方法

前言 一般情况下,多数移动开发者使用的是数据线连接电脑,进行各种移动设备的调试,更有胜者,非常迷恋模拟器,模拟器它好不好,答案是好,因为直接运行在电脑上,直接操作,调试…

免费送的广告怎么在网站上做wordpress 数据调用api接口

Redis 发布订阅 Redis 发布订阅 (pub/sub) 是一种消息通信模式:发送者 (pub) 发送消息,订阅者 (sub) 接收消息。Redis 客户端可以订阅任意数量的频道。 Redis 有两种发布订阅模式 基于频道(Channel)的发布订阅基于模式&#xff…

个人建设视频网站制作wordpress 邮件文本

源代码加密对于很多研发性单位来说是至关重要的,当然每家企业的业务需求不同所用的开发环境及开发语言也不尽相同,今天主要来讲一下c及git开发环境的源代码防泄密保护方案。 企业源代码泄密场景一、 在很多嵌入式开发企业中使用的c/c开发语言&#xff…

Stimulsoft 引入无代码脚本编程 —— Blockly 让报表与仪表盘更智能

Stimulsoft 是一款功能强大的数据可视化与报表平台,广泛应用于各类企业的数据分析与展示场景。其核心优势之一在于支持为报表和仪表盘添加自定义逻辑,以实现数据处理、可视化控制和用户交互等高级功能。 Stimulsoft …

理解、学习与使用 Java 中的 Optional

从 Java 8 引入的一个很有趣的特性是 Optional 类。Optional 类主要解决的问题是臭名昭著的空指针异常(NullPointerException) —— 每个 Java 程序员都非常了解的异常。 本质上,这是一个包含有可选值的包装类,这…

做网站的时候用的什么框架百度双站和响应式网站的区别

作者 | 磊哥来源 | Java面试真题解析(ID:aimianshi666)转载请联系授权(微信ID:GG_Stone)在 Java 中,跳转的实现方式有两种:请求转发和请求重定向,但二者是完全不同的&…

211 粉了整个小 QA 吧

可以发现我 \(211\) 粉了,既然是 \(211\) 这个这么有纪念意义的数字那就开一个小 Q&A:

建设网站需要申请报告网站开发费计入什么科目合适

通过上节课的学习,我们已经可以正常播放本地rtmp流及mp4文件,这节课,我们将在上节课的基础上实现一个常用的转推功能:读取rtmp流或mp4文件并转推到rtmp服务器上实现直播转发功能。 一、FFmpeg API 转码推流的一般过程 1.引入ffm…

p2p网站如何建设采集wordpress整站数据

文章目录 1.创建 Spring 项目步骤1.1 创建 Maven 项目1.2添加 Spring 框架支持1.3 添加启动项2.如何使用 Spring2.1 存储 Bean 对象2.1.1 创建 Bean对象2.1.2 将 Bean对象注册到容器中 2.2 获取并使用 Bean对象2.2.1 使用 ApplicationContext 获取对象2.2.2 使用 BeanFactory 获…

做网站搜索如何显示官网国内Wordpress博客平台

近日,华为终端BG CEO、智能汽车解决方案BU董事长余承东在2024年新年信中提出,开启华为终端未来大发展的新十年。 他特别提到,未来要构建强大的鸿蒙生态,2024年是原生鸿蒙的关键一年,将加快推进各类鸿蒙原生应用的开发…

deal 网站要怎么做如何在电商上购物网站

在vue学习中遇到给router-link 标签添加事件click 、mouseover等无效的情况 我想要做的是v-for遍历出来的选项卡&#xff0c; 鼠标移上去出现删除标签&#xff0c;移除标签消失的效果 原代码&#xff1a; <router-link v-for"(item, index) in pageMenuList"…

自己怎么制作企业网站动感网站模板

想写这篇文章好久了.但一直不敢写,一怕自己技术有限误导了园子里的各位朋友.二怕自己文笔有限不能很好的表达自己的意图,但既然是抱着交流的态度来的,我还是愿意写一写这方面的文章与大家一起交流和分享,欢迎大家拍砖.做SEO没有什么高深技术可言,靠的是经验的不断累积,各位SEO高…

北京建设厅网站首页手机网站和网站一体

有些编码套路是公认的&#xff0c;大家都参照其编写符合可观赏性的代码&#xff0c;那就是设计模式现在.NETcore 默认提供了DI功能&#xff0c;那我想设计一个全局的引擎类&#xff0c;进行注入服务、解析服务、配置中间件。并且要求该引擎类全局唯一&#xff0c;其他地方不能进…

网站建设与管理课程标准wordpress文章迁移到dz论坛

The Rise and Potential of Large Language Model Based Agents: A Surve - 基于 LLMs 的代理的兴起和潜力&#xff1a;一项调查 论文信息摘要1. 介绍2. 背景2.1 AI 代理的起源2.2 代理研究的技术趋势2.3 为什么大语言模型适合作为代理大脑的主要组件 3. 代理的诞生&#xff1a…

做网站的人叫什么软件咨询网站模板

[css] 怎样把单位cm转换成px呢&#xff08;在打印时有时会用到&#xff09; 1px所代表的长度2.54cm/分辨率 1cm分辨率/2.54个人简介 我是歌谣&#xff0c;欢迎和大家一起交流前后端知识。放弃很容易&#xff0c; 但坚持一定很酷。欢迎大家一起讨论 主目录 与歌谣一起通关前…