网站备案后可以更换域名吗网红营销优势

news/2025/9/26 12:50:20/文章来源:
网站备案后可以更换域名吗,网红营销优势,品牌全案公司,欧美简约风格网站设计Title 题目 Automated anomaly-aware 3D segmentation of bones and cartilages in kneeMR images from the Osteoarthritis Initiative 来自骨关节炎计划的膝关节MR图像的自动异常感知3D骨骼和软骨分割 Background 背景 近年来#xff0c;多个机器学习算法被提出用于图像… Title 题目 Automated anomaly-aware 3D segmentation of bones and cartilages in kneeMR images from the Osteoarthritis Initiative 来自骨关节炎计划的膝关节MR图像的自动异常感知3D骨骼和软骨分割 Background 背景 近年来多个机器学习算法被提出用于图像中的自动异常检测。无监督方法尤其是生成模型在医学成像领域展现了很大的潜力因为获取标注数据非常困难。近期的研究表明像Transformer这样的先进技术也能应用于脑部图像的异常检测和分割但其在三维3D图像中的应用仍面临数据和计算资源的挑战。相比之下基于卷积自编码器如U-Net的模型在计算资源方面要求较低。U-Net是一种流行的卷积神经网络CNN模型专为生物医学图像的语义分割设计具有独特的跳跃连接结构用于恢复图像下采样时丢失的空间信息。 自动医学图像分析的主要挑战包括缺乏标注数据和解剖结构中异常的存在尤其在大型数据集上进行手动标注非常费时。U-Net等模型常用于三维图像的体积分割并通过“深度监督”来提高分割的准确性。除了分割任务外U-Net结构的CNN还被用于图像修复和异常检测最近的研究采用了U-Net进行图像修复以识别并定位视觉异常。 上下文聚合网络CAN是另一种语义分割模型不同于U-Net的编码器–解码器结构它采用膨胀卷积而非下采样来进行多尺度上下文聚合。近年来CNN被广泛用于膝关节MR图像的骨骼和软骨分割但当图像中存在异常时分割任务的准确性下降。因此基于我们对U-Net和CAN的初步实验提出了一种异常感知的分割机制以更好地处理图像中的异常。 Aastract 摘要 In medical image analysis, automated segmentation of multi-component anatomical entities, with the possiblepresence of variable anomalies or pathologies, is a challenging task. In this work, we develop a multi-stepapproach using U-Net-based models to initially detect anomalies (bone marrow lesions, bone cysts) in the distalfemur, proximal tibia and patella from 3D magnetic resonance (MR) images in individuals with varying gradesof knee osteoarthritis. Subsequently, the extracted data are used for downstream tasks involving semanticsegmentation of individual bone and cartilage volumes as well as bone anomalies. For anomaly detection,U-Net-based models were developed to reconstruct bone volume profiles of the femur and tibia in images viainpainting so anomalous bone regions could be replaced with close to normal appearances. The reconstructionerror was used to detect bone anomalies. An anomaly-aware segmentation network, which was compared toanomaly-naïve segmentation networks, was used to provide a final automated segmentation of the individualfemoral, tibial and patellar bone and cartilage volumes from the knee MR images which contain a spectrumof bone anomalies. The anomaly-aware segmentation approach provided up to 58% reduction in Hausdorffdistances for bone segmentations compared to the results from anomaly-naïve segmentation networks. Inaddition, the anomaly-aware networks were able to detect bone anomalies in the MR images with greatersensitivity and specificity (area under the receiver operating characteristic curve [AUC] up to 0.896) comparedto anomaly-naïve segmentation networks (AUC up to 0.874). 在医学图像分析中对包含多个解剖结构成分且可能存在各种异常或病理的实体进行自动分割是一项极具挑战性的任务。在本研究中我们开发了一种多步骤的方法使用基于U-Net的模型首先检测在不同膝关节骨关节炎等级患者的三维磁共振MR图像中远端股骨、近端胫骨和髌骨的异常如骨髓病变、骨囊肿。随后提取的数据用于下游任务涉及单个骨骼和软骨体积的语义分割以及骨骼异常的分割。在异常检测中我们开发了基于U-Net的模型通过图像修复法重建股骨和胫骨的骨骼体积轮廓以便将异常的骨骼区域替换为接近正常外观。重建误差被用于检测骨骼异常。随后使用一种异常感知分割网络与不感知异常的分割网络进行对比最终从包含一系列骨骼异常的膝关节MR图像中自动分割出股骨、胫骨和髌骨的单个骨骼和软骨体积。与不感知异常的分割网络相比异常感知分割方法在骨骼分割的Hausdorff距离上最多减少了58%。此外异常感知网络在MR图像中检测骨骼异常时的灵敏度和特异性更高受试者工作特征曲线下面积[AUC]最高可达0.896相比之下不感知异常的分割网络的AUC最高为0.874。 Method 方法 The overall pipeline for the current work has 3 major components(Fig. 1). In Component 1, the anatomical regions of interest—here, thedistal femur and proximal tibia profiles—were erased from the imagesusing the reference segmentation masks, and then these regions wereinpainted using a 3D U-Net-based model (). In Component 2, the outputs from Component 1 and another 3D U-Net-based model () wereused to change anomalous bone regions in the original images to closeto normal appearances. The anomaly detection task was unsupervisedbecause the anomalies in the images were not labeled. The anomalieswere detected indirectly through the inpainting/reconstruction process.In Component 3, a 3D CNN-based segmentation network (), whichutilizes the information extracted from Component 2, was used to guidethe automated segmentation of bone and cartilage volumes (‘‘anomalyaware‘‘ segmentation), specifically aiming to improve segmentation ofthe femoral and tibial bone and cartilage volumes from images containing visible bone anomalies when compared to the vanilla (anomalyna´’ive) segmentation networks. 当前工作的整体流程包含三个主要部分图1。在组件1中感兴趣的解剖区域——这里指远端股骨和近端胫骨轮廓——通过参考分割掩膜从图像中擦除然后使用基于3D U-Net的模型对这些区域进行修复inpainting。在组件2中使用来自组件1的输出和另一个基于3D U-Net的模型对原始图像中的异常骨骼区域进行处理使其接近正常外观。异常检测任务是无监督的因为图像中的异常没有被标注异常通过修复/重建过程间接检测。在组件3中使用从组件2中提取的信息利用基于3D CNN的分割网络进行自动骨骼和软骨体积的分割“异常感知”分割。与普通的不感知异常的分割网络相比该方法旨在改善包含明显骨骼异常的图像中的股骨和胫骨骨骼及软骨体积的分割。 Conclusion 结论 In summary, this work demonstrated how simple U-Net-like neuralnetworks can be used for detecting bone lesions in knee MR imagesthrough reconstruction via inpainting. Moreover, it showed how thedetected anomalies can be further utilized for downstream tasks such assegmentation. The anomaly-aware networks gave a better performanceon average than their baseline networks in the segmentation tasks aswell as in the detection of bone lesions. The stable convergence behavior and performance with the new labels in the OAI ZIB–UQ and OAIAKOA datasets are promising and suggest that the proposed methodhas an advantage when there are relatively few training images and/orthe classes are highly imbalanced. It is hoped that future works willshow additional improvements and further applications of the anomalydetection and anomaly-aware segmentation models in medical imaging. 总而言之本研究展示了如何通过修复inpainting重建使用简单的类似U-Net的神经网络检测膝关节MR图像中的骨损伤。此外研究还展示了如何将检测到的异常进一步应用于后续的分割任务中。在分割任务和骨损伤检测中异常感知网络的平均性能优于其基线网络。研究中使用的新标签在 OAI ZIB–UQ 和 OAI AKOA 数据集上的稳定收敛行为和表现令人鼓舞这表明该方法在训练图像相对较少和/或类别高度不平衡时具有优势。希望未来的工作能够展示更多改进并进一步应用异常检测和异常感知分割模型于医学影像领域。 Results 结果 5.1. Anomaly detection Fig. 5 shows example output images from the anomaly detectionnetworks and . The input MR images from the knee show somevisible bone anomalies including BMLs and osteophytes. The networkoutputs are lossy reconstructions of the input images with the brightsignal bone anomalies within the cancellous bone mostly removed fromthe images. Some of the osteophytes were incompletely reconstructed.The network only had the original images as inputs, but the outputsfrom still have most of the anomalies appropriately blurred out. Thelast column of Fig. 5 shows the reconstruction error images from inwhich the anomalous regions detected within the cancellous bones arehighlighted. 5.1. 异常检测 图5显示了来自异常检测网络 和 的示例输出图像。膝关节的输入MR图像显示了一些明显的骨骼异常包括骨髓病变BMLs和骨赘。网络的输出是输入图像的有损重建图像中的亮信号骨骼异常大多从松质骨中移除。一些骨赘的重建不完全。网络 仅使用原始图像作为输入但 的输出仍然将大多数异常适当地模糊化。图5的最后一列显示了来自 的重建误差图像其中检测到的松质骨内的异常区域被高亮显示。 Figure 图 Fig. 1. Overall pipeline for anomaly detection and the downstream segmentation task. Components 1 and 2 are the anomaly detection models. performs image inpainting and performs image compression (Section 3.1), and is a separate model that aims to reconstruct the original images without the visible anomalies (Section 3.2). The blue arrowpoints to a bone lesion (anomaly). Component 3 (model ) is the downstream segmentation task using the anomaly-aware segmentation approach (Section 3.3). FB: femoral bone;FC: femoral cartilage; TB: tibial bone; TC: tibial cartilage. 图1. 异常检测和后续分割任务的总体流程。组件1和2是异常检测模型。执行图像修复执行图像压缩第3.1节是一个单独的模型旨在重建不含明显异常的原始图像第3.2节。蓝色箭头指向骨损伤异常。组件3模型是使用异常感知分割方法进行的后续分割任务第3.3节。FB股骨FC股骨软骨TB胫骨TC胫骨软骨。 Fig. 2. The two anomaly detection networks with a 3D U-Net-based architecture. Blue boxes represent feature maps, with the number of channels denoted above each box. (a)Network regenerates the original images from masked images through inpainting and decoding of compressed images. The compressed images are provided by a small network trained concurrently with . (b) Network i 图2. 两个基于3D U-Net架构的异常检测网络。蓝色框表示特征图框上方的数字表示通道数。(a) 网络通过修复inpainting和解码压缩图像从被遮盖的图像中重生成原始图像。压缩图像由与同时训练的小型网络提供。(b) 网络 Fig. 3. The anomaly-aware segmentation network based on (a) 3D U-Net and (b) 3D CAN with deep supervision. The information extracted from the anomaly detector wasutilized to inform the segmentation of the distal femur and proximal tibia from the knee MR images containing bone abnormalities 图3. 基于 (a) 3D U-Net 和 (b) 带深度监督的 3D CAN 的异常感知分割网络 。从异常检测器 提取的信息被用于指导从包含骨骼异常的膝关节MR图像中分割远端股骨和近端胫骨。 Fig. 4. Transfer learning for further segmentation of knee MR images. Here, refers tothe number of MR examinations while refers to the number of segmentation classes(including the background) in the dataset. See Table 1 for the list of segmentationclasses. 图4. 用于膝关节MR图像进一步分割的迁移学习。这里 代表MR检查的次数 代表数据集中分割类别的数量包括背景。有关分割类别的列表请参见表1。 Fig. 5. Example outputs from the bone anomaly detection networks and . Figures (a) and (b) are images from the OAI ZIB dataset, and Figure (c) is an image from the OAIAKOA dataset. The last column shows the error images (color-mapped and overlaid on the input images) highlighting the difference between the input image and the output from. Regions of BMLs (blue arrows) in the femur and patella and part of an osteophyte (yellow arrow) on the femur had high reconstruction errors. 图5. 来自骨骼异常检测网络 和 的示例输出。(a) 和 (b) 图像来自 OAI ZIB 数据集(c) 图像来自 OAI AKOA 数据集。最后一列显示了误差图像颜色映射并叠加在输入图像上突出显示了输入图像与 输出之间的差异。股骨和髌骨中的骨髓病变区域蓝色箭头以及股骨上的部分骨赘黄色箭头显示出较高的重建误差。 Fig. 6. Example segmentation outputs for the femoral and tibial bones (purple) and cartilages (yellow) generated by the individual network implementation with the OAI ZIB dataset.The examples show (a) images with little to no visible bone anomalies where all networks produced good segmentation masks and (b,c) images with visible bone anomalies (bluearrows) where segmentation networks tended to fail to produce plausible segmentation masks. The anomaly-aware networks, especially -, were better able to correctlysegment the images with anomalies 图6. 使用 OAI ZIB 数据集生成的股骨和胫骨紫色以及软骨黄色的示例分割输出。示例显示了 (a) 几乎没有可见骨骼异常的图像所有网络都生成了良好的分割掩膜以及 (b, c) 具有可见骨骼异常的图像蓝色箭头其中分割网络往往无法生成合理的分割掩膜。异常感知网络特别是 -在正确分割带有异常的图像时表现更好。 Fig. 7. Boxplots of Hausdorff distance (HD) values for the proposed anomaly-awaresegmentation approach ( - and -) and baseline networks, evaluated onthe OAI ZIB dataset using 5-fold cross-validation. Note that these HDs are results afterpost-processing 图7. 提出了基于异常感知分割方法- 和 -与基线网络的Hausdorff距离HD值的箱线图使用 OAI ZIB 数据集通过5折交叉验证进行评估。请注意这些HD值是在后处理后的结果。 Fig. 8. Example outputs from the segmentation networks for images from the OAI AKOA dataset, segmenting the patella and visible bone lesions in addition to the femur and tibia.Note that the images are zoomed in to view the patella more closely. The masks are overlaid on the input images (purple: bones; yellow: cartilages; red: bone lesions). (a) Whenthe images had no visible anomalies, all networks except produced good segmentation of the patella. The network failed to converge for the patellar cartilagelabel. (b,c) The anomaly-aware networks were able to detect and segment most of the visible lesions along with the anatomical structures on images that the other segmentationnetworks had difficulty with. 图8. 分割网络从 OAI AKOA 数据集中生成的示例输出分割髌骨和可见骨损伤此外还包括股骨和胫骨。请注意这些图像经过放大以更清晰地查看髌骨。掩膜叠加在输入图像上紫色骨骼黄色软骨红色骨损伤。(a) 当图像没有明显的异常时除了 外所有网络都能很好地分割髌骨。 网络未能对髌骨软骨标签进行收敛。(b, c) 异常感知网络能够检测并分割大多数可见损伤以及图像中的解剖结构而其他分割网络在这些图像上表现较差。 Fig. 9. Boxplots of Hausdorff distance (HD) values for the proposed anomaly-awaresegmentation approach ( - and - ) and baseline networks with transferlearning, evaluated on the OAI AKOA dataset using 5-fold cross-validation. These HDsare results after post-processing. Note also that failed to converge for the PClabel, so it was excluded from the plot. 图9. 基于异常感知分割方法- 和 - 与迁移学习的基线网络的Hausdorff距离HD值的箱线图使用 OAI AKOA 数据集通过5折交叉验证进行评估。这些HD值是在后处理后的结果。请注意由于 在髌骨软骨PC标签上未能收敛因此该标签已从图中排除。 Fig. A.10. The anomaly-aware segmentation network for transfer learning based on (a) 3D U-Net and (b) 3D CAN. The network is a slight modification from (Fig. 3)where 5 more channels were added to the output layer. During training, the first two convolution blocks were frozen. 图A.10. 用于迁移学习的异常感知分割网络 基于 (a) 3D U-Net 和 (b) 3D CAN。网络 是对 图3进行的轻微修改输出层增加了5个通道。在训练过程中前两个卷积块被冻结。 Fig. C.11. Example of (a) ‘‘false positive‘‘ and (b) ‘‘false negative’’ case, which mostlyoccurred with very small lesions. The orange boxes highlight the small lesions. 图C.11. (a)“假阳性”和 (b)“假阴性”案例的示例主要发生在非常小的病变中。橙色框突出显示了小病变。 Table 表 Table 1Summary of the datasets used in the current study. 表1本研究中使用的数据集摘要。 Table 2Mean DSC, ASD, and HD values for segmentations of the femoral and tibial bone and cartilage volumes from the proposed anomaly-aware method ( - and -) withtheir baseline networks, evaluated using 5-fold cross-validation on the OAI ZIB dataset ( 507). 表2使用5折交叉验证在 OAI ZIB 数据集 507上评估的股骨和胫骨骨骼及软骨体积的分割中基于提出的异常感知方法- 和 -与其基线网络的平均Dice相似系数DSC、平均表面距离ASD和Hausdorff距离HD值。 Table 3Mean DSC, ASD, and HD values for segmentation of the femoral, tibial, and patellar bone and cartilage volumes from the proposed anomaly-aware method ( - and-* ) with their baseline networks with transfer learning, evaluated using 5-fold cross-validation on the OAI AKOA dataset ( 24 × 2). 表3使用迁移学习的基于异常感知方法- 和 - 及其基线网络对股骨、胫骨和髌骨的骨骼及软骨体积进行分割的平均Dice相似系数DSC、平均表面距离ASD和Hausdorff距离HD值使用 OAI AKOA 数据集 24 × 2通过5折交叉验证进行评估。 Table 4Bone lesion detection and segmentation performance on the OAI AKOA dataset in terms of accuracy and mean DSC. Here,Acc. refers to the accuracy with no post-processing while ⌈Acc.⌉ refers to the highest accuracy achieved with post-processing.Both are reported with the corresponding sensitivity (TPR) and specificity (TNR). ⌈DSC⌉ is the highest mean DSC (averagedover all bone lesions) achieved with post-processing. AUC is the area under the receiver operating characteristic (ROC) curve.Note that failed to converge for the patellar lesion label. Results for each bone can be found in the supplementarymaterial. 表4OAI AKOA 数据集上骨损伤检测和分割性能的准确率和平均DSC。这里Acc. 表示无后处理的准确率⌈Acc.⌉ 表示通过后处理达到的最高准确率。两者都报告了相应的敏感性TPR和特异性TNR。⌈DSC⌉ 是通过后处理达到的最高平均DSC在所有骨损伤上取平均。AUC 是受试者工作特征ROC曲线下面积。请注意 在髌骨损伤标签上未能收敛。每个骨的结果可以在补充材料中找到。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/918261.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

asp网站配置伪静态重庆注册公司核名在哪个网站

上次提到的开机自启动的配置,获得了LD的称赞,然而LD的要求,都是“既得陇复望蜀”的,他又期望我们能实现openGauss安装的“自动化”,于是尝试了下用shell脚本部署,附件中的脚本实测有效,openEule…

详细介绍:《 Linux 点滴漫谈: 一 》开源之路:Linux 的历史、演进与未来趋势

详细介绍:《 Linux 点滴漫谈: 一 》开源之路:Linux 的历史、演进与未来趋势pre { white-space: pre !important; word-wrap: normal !important; overflow-x: auto !important; display: block !important; font-fa…

深入解析:TENGJUN“二合一(2.5MM+3.5MM)”耳机插座:JA10-BPD051-A;参数与材质说明

深入解析:TENGJUN“二合一(2.5MM+3.5MM)”耳机插座:JA10-BPD051-A;参数与材质说明pre { white-space: pre !important; word-wrap: normal !important; overflow-x: auto !important; display: block !important…

龙凤网站建设云聚达长春网站建设哪里好

基于飞桨paddle波士顿房价预测练习模型测试代码 导入基础库 #paddle:飞桨的主库,paddle 根目录下保留了常用API的别名,当前包括:paddle.tensor、paddle.framework、paddle.device目录下的所有API; import paddle #Lin…

CentOS 9服务器版 部署Zabbix7.0 server端 - 详解

pre { white-space: pre !important; word-wrap: normal !important; overflow-x: auto !important; display: block !important; font-family: "Consolas", "Monaco", "Courier New", …

深入解析:Apache 生产环境操作与 LAMP 搭建指南

pre { white-space: pre !important; word-wrap: normal !important; overflow-x: auto !important; display: block !important; font-family: "Consolas", "Monaco", "Courier New", …

JAVA第一天

Markdown 学习 标题 +空格=一级标题 +空格=二级标题 ......... 字体 粗体 斜体 粗斜体 删除 引用第一天学习分割线图片超链接 我的世界 列表表格ctrl+t 代码

什么网站做简历模板关键词排名怎么快速上去

http://answers.unity3d.com/questions/34328/terrain-with-multiple-splat-textures-how-can-i-det.html转载于:https://www.cnblogs.com/klobohyz/archive/2012/10/09/2716627.html

c 网站开发需要什么软件东莞出行政策有变了

文章目录 前言一、哈希结构体?二、增删差3、遍历,清空,计数 前言 哈希表在头文件“utash.h”中已经有了,只需简单学习用法即可 例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很…

自己做免费网站的视频参考消息电子版手机版

处理 HttpApplication 的事件HttpApplication 提供了基于事件的扩展机制,允许程序员借助于处理管道中的事件进行处理过程扩展。由于 HttpApplication 对象是由 ASP.NET 基础架构来创建和维护的,那么,如何才能获取这个对象引用,以便…

东莞营销型网站建设流程网站速成

1.类型转换 1.1 int(x):转化为一个整数&#xff0c;只能转换由纯数字组成的字符串 float->int 浮点型强转整形会去掉小数点后面的数&#xff0c;只保留整数部分 a 1.2 print(type(a)) #<class float> b int(a) print(type(b)) #<class int>print(int…

现货做网站wordpress登入可见插件

需做工作 在每个微服务下面新建一个Dockerfile文件根据Dockerfile文件使用docker build指令&#xff0c;打包为具体的镜像&#xff08;根据自己需求选择&#xff09;将docker镜像上传到私人docker仓库或者是公共仓库&#xff0c;如果没有上传&#xff0c;则自动保存在本地编写…

C# Avalonia 15- Animation- CustomEasingFunction

C# Avalonia 15- Animation- CustomEasingFunctionCustomEasingFunction.axaml代码<Window xmlns="https://github.com/avaloniaui"xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"xm…

白银市建设局网站云捷配快速开发平台

目录 环境准备 生成SSH 密钥对 数据库备份并推送到gitlab脚本 设置定时任务 环境准备 服务器要有安装达梦数据库&#xff08;达梦安装这里就不示例了&#xff09;&#xff0c;git 安装Git 1、首先&#xff0c;确保包列表是最新的&#xff0c;运行以下命令&#xff1a; …

网站开发综合实训总结变化型网页网站有哪些

编辑 | 宋慧 出品 | CSDN云计算 vSphere、vSAN&#xff0c;从云计算兴起&#xff0c;就是 VMware 在虚拟化、分布式存储里大名鼎鼎的核心技术产品。不过随着云的发展到云原生、以及国内混合云快速发展的今天&#xff0c;虚拟化的领导者 VMware 有哪些最新的方案&#xff0c;值…

网站开发语言那个好新建网站如何调试

SQL 视图&#xff1a;概念、应用与最佳实践 SQL&#xff08;Structured Query Language&#xff09;视图是数据库管理中的一个重要概念&#xff0c;它允许用户以虚拟表的形式查看数据。视图在数据库中并不实际存储数据&#xff0c;而是提供了一个查询结果的快照&#xff0c;这…

哪个网站可以做鸟瞰图济南网站建设索q479185700

记录一下最近的生活&#xff0c;做一下简单的梳理&#xff0c;具体详细的梳理等我目前的工作步入正轨 以后再开始好好地总结一下2023年的过往经历&#xff0c;总结过去&#xff0c;展望未来。计划一下未来的2024该怎么度过。 最近一阵子都忙着考试&#xff0c;然后从10号以后一…

US$189 VVDI2 BMW FEM amp; BDC Functions Authorization Service With Ikeycutter Condor

VVDI2 BMW FEM & BDC Functions Authorization Service With Ikeycutter CondorNote: VVDI2 now add BMW FEM & BDC functions, VVDI2 Must have BMW OBD Function(SV86-3), then can open this function.Ther…

wordpress删除中文温州网站建设选择乐云seo

使用命令查看磁盘的空间 docker system df &#xff0c;类似于Linux的df命令&#xff0c;用于查看Docker使用的磁盘空间Docker镜像占据了4.789GBDocker容器占据了348BDocker数据卷占据了0B 执行删除命令 docker system prune命令可以用于清理磁盘&#xff0c;删除关闭的容器、…

屏山移动网站建设百度获客

随着科技的不断进步&#xff0c;智能家居逐渐成为现代生活的一部分。ESP-NOW技术以其独特的无线通信能力&#xff0c;为智能家居领域带来了一场革命。 ESP-NOW是一种由乐鑫定义的无线通信协议&#xff0c;它能够在无需路由器的情况下&#xff0c;实现设备间的直接、快速、低功…