三维模型非结构化网格生成

news/2025/9/24 17:53:45/文章来源:https://www.cnblogs.com/y4353536666/p/19109699

三维非结构化网格生成方案,包含多种算法和MATLAB实现。

1. 基础类和数据结构

classdef Mesh3D < handleproperties% 网格基本数据nodes          % 节点坐标 (N×3)elements       % 单元连接关系 (M×4 四面体 或 M×8 六面体)faces          % 边界面信息boundaries     % 边界条件信息% 网格质量指标element_quality % 单元质量aspect_ratio    % 长宽比jacobian        % 雅可比矩阵% 几何信息bounding_box    % 包围盒volume          % 总体积endproperties (Access = private)% 内部计算变量node_elements   % 节点-单元邻接关系element_neighbors % 单元-单元邻接关系edge_elements   % 边-单元邻接关系endmethodsfunction obj = Mesh3D(nodes, elements)% 构造函数if nargin >= 1obj.nodes = nodes;endif nargin >= 2obj.elements = elements;endendfunction calculate_quality(obj)% 计算网格质量fprintf('计算网格质量指标...\n');num_elements = size(obj.elements, 1);obj.element_quality = zeros(num_elements, 1);obj.aspect_ratio = zeros(num_elements, 1);for i = 1:num_elementselement_nodes = obj.nodes(obj.elements(i, :), :);[quality, aspect] = obj.calculate_tetrahedron_quality(element_nodes);obj.element_quality(i) = quality;obj.aspect_ratio(i) = aspect;endendfunction [quality, aspect_ratio] = calculate_tetrahedron_quality(~, nodes)% 计算四面体质量% 基于体积与边长比的质量度量% 计算边长edges = [norm(nodes(1,:) - nodes(2,:));norm(nodes(1,:) - nodes(3,:));norm(nodes(1,:) - nodes(4,:));norm(nodes(2,:) - nodes(3,:));norm(nodes(2,:) - nodes(4,:));norm(nodes(3,:) - nodes(4,:));];mean_edge = mean(edges);rms_edge = sqrt(mean(edges.^2));% 计算体积v1 = nodes(2,:) - nodes(1,:);v2 = nodes(3,:) - nodes(1,:);v3 = nodes(4,:) - nodes(1,:);volume = abs(dot(cross(v1, v2), v3)) / 6;% 理想四面体边长ideal_volume = (mean_edge^3) / (6*sqrt(2));% 质量指标 (0-1, 1为理想形状)if ideal_volume > 0quality = volume / ideal_volume;elsequality = 0;end% 长宽比aspect_ratio = max(edges) / min(edges);endfunction visualize(obj, show_quality)% 可视化网格if nargin < 2show_quality = false;endfigure('Position', [100, 100, 1200, 500]);if show_quality && ~isempty(obj.element_quality)% 显示质量分布subplot(1,2,1);obj.plot_mesh_with_quality();subplot(1,2,2);obj.plot_quality_histogram();else% 仅显示网格obj.plot_mesh();endendfunction plot_mesh(obj)% 绘制三维网格tetramesh(obj.elements, obj.nodes, 'FaceAlpha', 0.3);axis equal;xlabel('X'); ylabel('Y'); zlabel('Z');title('三维非结构化网格');grid on;endfunction plot_mesh_with_quality(obj)% 根据质量着色显示网格patch('Faces', obj.get_triangle_faces(), ...'Vertices', obj.nodes, ...'FaceVertexCData', obj.get_vertex_quality(), ...'FaceColor', 'interp', ...'EdgeAlpha', 0.3, ...'FaceAlpha', 0.6);axis equal;colorbar;xlabel('X'); ylabel('Y'); zlabel('Z');title('网格质量分布');grid on;endfunction plot_quality_histogram(obj)% 绘制质量分布直方图histogram(obj.element_quality, 50);xlabel('质量指标');ylabel('单元数量');title('网格质量分布直方图');grid on;fprintf('质量统计: 均值=%.3f, 标准差=%.3f, 最小值=%.3f, 最大值=%.3f\n', ...mean(obj.element_quality), std(obj.element_quality), ...min(obj.element_quality), max(obj.element_quality));endendmethods (Access = private)function tri_faces = get_triangle_faces(obj)% 获取四面体的三角面片tri_faces = [];for i = 1:size(obj.elements, 1)tetra = obj.elements(i, :);% 四面体的四个面tri_faces = [tri_faces; tetra([1,2,3]);tetra([1,2,4]);tetra([1,3,4]);tetra([2,3,4])];endendfunction vertex_quality = get_vertex_quality(obj)% 计算顶点质量(相邻单元质量的平均)vertex_quality = zeros(size(obj.nodes, 1), 1);vertex_count = zeros(size(obj.nodes, 1), 1);for i = 1:size(obj.elements, 1)elem_vertices = obj.elements(i, :);for j = 1:length(elem_vertices)v = elem_vertices(j);vertex_quality(v) = vertex_quality(v) + obj.element_quality(i);vertex_count(v) = vertex_count(v) + 1;endendvertex_quality = vertex_quality ./ max(vertex_count, 1);endend
end

2. Delaunay三角剖分网格生成

classdef DelaunayMeshGenerator < handlepropertiespoints          % 输入点集constraints     % 几何约束boundary_faces  % 边界面mesh            % 生成的网格endproperties (Access = private)tetrahedralizer % 四面体剖分器quality_threshold = 0.1 % 质量阈值endmethodsfunction obj = DelaunayMeshGenerator(points, boundary_faces)% 构造函数obj.points = points;if nargin >= 2obj.boundary_faces = boundary_faces;endendfunction mesh = generate_mesh(obj, options)% 生成Delaunay三角剖分网格fprintf('开始Delaunay三角剖分...\n');if nargin < 2options = struct();end% 设置默认参数if ~isfield(options, 'refine')options.refine = true;endif ~isfield(options, 'quality_target')options.quality_target = 0.3;end% 初始Delaunay剖分tetrahedra = delaunayTriangulation(obj.points);% 应用边界约束if ~isempty(obj.boundary_faces)obj.apply_boundary_constraints(tetrahedra);end% 网格优化if options.refinetetrahedra = obj.refine_mesh(tetrahedra, options.quality_target);end% 创建网格对象mesh = Mesh3D(tetrahedra.Points, tetrahedra.ConnectivityList);mesh.calculate_quality();obj.mesh = mesh;fprintf('Delaunay网格生成完成: %d个节点, %d个单元\n', ...size(mesh.nodes, 1), size(mesh.elements, 1));endfunction apply_boundary_constraints(obj, tetrahedra)% 应用边界约束fprintf('应用边界约束...\n');% 这里实现边界约束逻辑% 在实际应用中,可能需要使用约束Delaunay三角剖分endfunction refined_tetrahedra = refine_mesh(obj, tetrahedra, quality_target)% 网格细化fprintf('网格细化,目标质量: %.2f\n', quality_target);points = tetrahedra.Points;elements = tetrahedra.ConnectivityList;max_iterations = 10;for iter = 1:max_iterations% 计算当前网格质量quality = obj.calculate_mesh_quality(points, elements);fprintf('迭代 %d: 平均质量 = %.3f\n', iter, mean(quality));% 检查是否达到目标质量if mean(quality) >= quality_targetbreak;end% 识别低质量单元bad_elements = find(quality < obj.quality_threshold);if isempty(bad_elements)break;end% 细化低质量单元[points, elements] = obj.refine_bad_elements(points, elements, bad_elements);endrefined_tetrahedra = triangulation(elements, points);endfunction quality = calculate_mesh_quality(~, points, elements)% 计算网格质量num_elements = size(elements, 1);quality = zeros(num_elements, 1);for i = 1:num_elementselem_nodes = points(elements(i, :), :);v1 = elem_nodes(2,:) - elem_nodes(1,:);v2 = elem_nodes(3,:) - elem_nodes(1,:);v3 = elem_nodes(4,:) - elem_nodes(1,:);volume = abs(dot(cross(v1, v2), v3)) / 6;% 计算边长edges = [norm(elem_nodes(1,:) - elem_nodes(2,:));norm(elem_nodes(1,:) - elem_nodes(3,:));norm(elem_nodes(1,:) - elem_nodes(4,:));norm(elem_nodes(2,:) - elem_nodes(3,:));norm(elem_nodes(2,:) - elem_nodes(4,:));norm(elem_nodes(3,:) - elem_nodes(4,:));];mean_edge = mean(edges);ideal_volume = (mean_edge^3) / (6*sqrt(2));if ideal_volume > 0quality(i) = volume / ideal_volume;elsequality(i) = 0;endendendfunction [new_points, new_elements] = refine_bad_elements(obj, points, elements, bad_elements)% 细化低质量单元new_points = points;new_elements = elements;% 这里实现具体的细化算法% 可以使用最长边二分、Ruppert算法等% 简化的细化策略:在低质量单元的重心插入新点for i = 1:length(bad_elements)elem_idx = bad_elements(i);elem_nodes = elements(elem_idx, :);% 计算重心centroid = mean(points(elem_nodes, :), 1);% 添加新点new_points = [new_points; centroid];new_point_idx = size(new_points, 1);% 重新划分单元(简化处理)% 实际应用中需要更复杂的细分逻辑endendend
end

3. 前沿推进法网格生成

classdef AdvancingFrontMeshGenerator < handlepropertiesboundary_nodes   % 边界节点boundary_edges   % 边界边boundary_faces   % 边界面front            % 前沿队列mesh             % 生成的网格endproperties (Access = private)point_spacing    % 点间距函数max_iterations = 10000 % 最大迭代次数search_radius_factor = 2.0 % 搜索半径因子endmethodsfunction obj = AdvancingFrontMeshGenerator(boundary_nodes, boundary_faces)% 构造函数obj.boundary_nodes = boundary_nodes;obj.boundary_faces = boundary_faces;% 从边界面提取边界边obj.extract_boundary_edges();% 初始化前沿obj.initialize_front();endfunction mesh = generate_mesh(obj, spacing_function)% 使用前沿推进法生成网格fprintf('开始前沿推进法网格生成...\n');if nargin >= 2obj.point_spacing = spacing_function;elseobj.point_spacing = @(x) obj.default_spacing(x);end% 初始化网格数据nodes = obj.boundary_nodes;elements = [];iteration = 0;while ~isempty(obj.front) && iteration < obj.max_iterations% 获取当前前沿面current_face = obj.get_next_front_face();% 生成新点new_point = obj.generate_ideal_point(current_face);% 检查新点有效性if obj.is_point_valid(new_point, nodes)% 创建新单元new_element = obj.create_new_element(current_face, new_point);% 更新网格nodes = [nodes; new_point];elements = [elements; new_element];% 更新前沿obj.update_front(current_face, new_point);else% 处理无效点情况obj.handle_invalid_point(current_face);enditeration = iteration + 1;if mod(iteration, 100) == 0fprintf('迭代 %d: 前沿大小 = %d\n', iteration, length(obj.front));endend% 创建网格对象mesh = Mesh3D(nodes, elements);mesh.calculate_quality();obj.mesh = mesh;fprintf('前沿推进法网格生成完成: %d个节点, %d个单元\n', ...size(mesh.nodes, 1), size(mesh.elements, 1));endfunction extract_boundary_edges(obj)% 从边界面提取边界边obj.boundary_edges = [];for i = 1:size(obj.boundary_faces, 1)face = obj.boundary_faces(i, :);% 面的三条边obj.boundary_edges = [obj.boundary_edges; face([1,2]);face([1,3]);face([2,3])];end% 去除重复边obj.boundary_edges = unique(sort(obj.boundary_edges, 2), 'rows');endfunction initialize_front(obj)% 初始化前沿队列obj.front = obj.boundary_faces;fprintf('初始化前沿: %d个面\n', size(obj.front, 1));endfunction face = get_next_front_face(obj)% 获取下一个要处理的前沿面(基于质量或尺寸)if isempty(obj.front)face = [];return;end% 简单策略:取第一个面face = obj.front(1, :);obj.front(1, :) = [];endfunction ideal_point = generate_ideal_point(obj, face)% 生成理想点位置face_nodes = obj.boundary_nodes(face, :);% 计算面法向量v1 = face_nodes(2,:) - face_nodes(1,:);v2 = face_nodes(3,:) - face_nodes(1,:);face_normal = cross(v1, v2);face_normal = face_normal / norm(face_normal);% 计算面中心face_center = mean(face_nodes, 1);% 计算理想距离(基于局部间距)avg_edge_length = mean([norm(v1), norm(v2), norm(face_nodes(3,:)-face_nodes(2,:))]);ideal_distance = avg_edge_length * sqrt(2/3); % 理想四面体高度% 生成理想点ideal_point = face_center + face_normal * ideal_distance;endfunction valid = is_point_valid(obj, point, existing_points)% 检查点有效性(不与现有点冲突)valid = true;if isempty(existing_points)return;end% 检查与现有点的最小距离distances = sqrt(sum((existing_points - point).^2, 2));min_distance = min(distances);local_spacing = obj.point_spacing(point);if min_distance < 0.5 * local_spacingvalid = false;return;end% 检查是否在几何边界内(需要几何信息)% 这里需要具体的几何边界检查逻辑endfunction new_element = create_new_element(obj, face, new_point)% 创建新四面体单元new_point_idx = size(obj.boundary_nodes, 1) + 1; % 新点索引new_element = [face, new_point_idx];endfunction update_front(obj, processed_face, new_point)% 更新前沿队列% 移除处理过的面,添加新生成的面% 这里需要实现前沿的更新逻辑% 包括面的添加、删除和合并endfunction handle_invalid_point(obj, face)% 处理无效点情况% 可以尝试调整点位置或选择不同的策略fprintf('无效点检测,调整生成策略...\n');endfunction spacing = default_spacing(~, point)% 默认间距函数spacing = 1.0; % 常数间距endend
end

4. 八叉树网格生成

classdef OctreeMeshGenerator < handlepropertiesgeometry        % 几何模型root_node       % 八叉树根节点mesh            % 生成的网格min_level = 1   % 最小细分级别max_level = 6   % 最大细分级别endproperties (Access = private)size_function   % 尺寸函数balance_tree = true % 是否平衡八叉树endmethodsfunction obj = OctreeMeshGenerator(geometry, size_function)% 构造函数obj.geometry = geometry;if nargin >= 2obj.size_function = size_function;elseobj.size_function = @(x) obj.default_size_function(x);endendfunction mesh = generate_mesh(obj)% 生成八叉树网格fprintf('开始八叉树网格生成...\n');% 构建八叉树obj.build_octree();% 平衡八叉树(如果需要)if obj.balance_treeobj.balance_octree();end% 生成网格[nodes, elements] = obj.convert_octree_to_mesh();% 创建网格对象mesh = Mesh3D(nodes, elements);mesh.calculate_quality();obj.mesh = mesh;fprintf('八叉树网格生成完成: %d个节点, %d个单元\n', ...size(mesh.nodes, 1), size(mesh.elements, 1));endfunction build_octree(obj)% 构建八叉树fprintf('构建八叉树 (级别 %d-%d)...\n', obj.min_level, obj.max_level);% 获取几何包围盒bbox = obj.calculate_bounding_box();% 创建根节点obj.root_node = OctreeNode(bbox, 1);% 递归细分obj.subdivide_node(obj.root_node);endfunction subdivide_node(obj, node)% 递归细分八叉树节点if node.level >= obj.max_levelreturn;end% 检查细分条件if obj.need_subdivision(node)% 细分节点node.subdivide();% 递归处理子节点for i = 1:8obj.subdivide_node(node.children(i));endendendfunction need_subdivide = need_subdivision(obj, node)% 判断节点是否需要细分need_subdivide = false;% 基于尺寸函数的细分条件node_center = node.get_center();desired_size = obj.size_function(node_center);node_size = node.get_size();if node_size > 2 * desired_sizeneed_subdivide = true;end% 基于几何特征的细分条件if obj.intersects_geometry(node) && node.level < obj.max_levelneed_subdivide = true;endendfunction balance_octree(obj)% 平衡八叉树(确保相邻节点级别差不超过1)fprintf('平衡八叉树...\n');% 实现八叉树平衡算法endfunction [nodes, elements] = convert_octree_to_mesh(obj)% 将八叉树转换为网格fprintf('转换八叉树为网格...\n');% 收集所有叶子节点leaf_nodes = obj.collect_leaf_nodes();% 生成节点和单元nodes = [];elements = [];node_map = containers.Map('KeyType', 'char', 'ValueType', 'int32');for i = 1:length(leaf_nodes)node = leaf_nodes{i};[node_points, node_elements] = obj.convert_node_to_elements(node, node_map);nodes = [nodes; node_points];elements = [elements; node_elements];end% 去除重复节点[nodes, ~, ic] = unique(nodes, 'rows', 'stable');elements = ic(elements);endfunction leaf_nodes = collect_leaf_nodes(obj)% 收集所有叶子节点leaf_nodes = {};obj.traverse_octree(obj.root_node, leaf_nodes);endfunction traverse_octree(obj, node, leaf_nodes)% 遍历八叉树收集叶子节点if isempty(node.children)leaf_nodes{end+1} = node;elsefor i = 1:8obj.traverse_octree(node.children(i), leaf_nodes);endendendfunction bbox = calculate_bounding_box(obj)% 计算几何包围盒% 这里需要根据具体几何计算bbox = [0, 1, 0, 1, 0, 1]; % 默认包围盒endfunction intersects = intersects_geometry(~, node)% 检查节点是否与几何相交(简化实现)intersects = true; % 默认全部相交endfunction size = default_size_function(~, point)% 默认尺寸函数size = 0.1; % 常数尺寸endend
endclassdef OctreeNode < handlepropertiesbbox            % 包围盒 [xmin, xmax, ymin, ymax, zmin, zmax]level           % 节点级别children        % 子节点parent          % 父节点endmethodsfunction obj = OctreeNode(bbox, level)% 构造函数obj.bbox = bbox;obj.level = level;obj.children = [];endfunction subdivide(obj)% 细分八叉树节点if ~isempty(obj.children)return; % 已经细分过endxmin = obj.bbox(1); xmax = obj.bbox(2);ymin = obj.bbox(3); ymax = obj.bbox(4);zmin = obj.bbox(5); zmax = obj.bbox(6);xmid = (xmin + xmax) / 2;ymid = (ymin + ymax) / 2;zmid = (zmin + zmax) / 2;% 创建8个子节点obj.children = OctreeNode.empty(8,0);% 八分体划分obj.children(1) = OctreeNode([xmin, xmid, ymin, ymid, zmin, zmid], obj.level + 1);obj.children(2) = OctreeNode([xmid, xmax, ymin, ymid, zmin, zmid], obj.level + 1);obj.children(3) = OctreeNode([xmin, xmid, ymid, ymax, zmin, zmid], obj.level + 1);obj.children(4) = OctreeNode([xmid, xmax, ymid, ymax, zmin, zmid], obj.level + 1);obj.children(5) = OctreeNode([xmin, xmid, ymin, ymid, zmid, zmax], obj.level + 1);obj.children(6) = OctreeNode([xmid, xmax, ymin, ymid, zmid, zmax], obj.level + 1);obj.children(7) = OctreeNode([xmin, xmid, ymid, ymax, zmid, zmax], obj.level + 1);obj.children(8) = OctreeNode([xmid, xmax, ymid, ymax, zmid, zmax], obj.level + 1);% 设置父节点for i = 1:8obj.children(i).parent = obj;endendfunction center = get_center(obj)% 获取节点中心center = [(obj.bbox(1) + obj.bbox(2)) / 2, ...(obj.bbox(3) + obj.bbox(4)) / 2, ...(obj.bbox(5) + obj.bbox(6)) / 2];endfunction size = get_size(obj)% 获取节点尺寸size = obj.bbox(2) - obj.bbox(1);endfunction [points, elements] = convert_node_to_elements(obj, node_map)% 将节点转换为网格单元(六面体)% 这里实现八叉树节点到六面体单元的转换points = [];elements = [];endend
end

5. 网格优化和平滑

classdef MeshOptimizer < handlepropertiesmesh            % 待优化的网格optimization_method = 'laplacian' % 优化方法max_iterations = 100 % 最大迭代次数quality_threshold = 0.1 % 质量阈值endmethodsfunction obj = MeshOptimizer(mesh)% 构造函数obj.mesh = mesh;endfunction optimized_mesh = optimize(obj, method)% 网格优化if nargin >= 2obj.optimization_method = method;endfprintf('开始网格优化 (%s方法)...\n', obj.optimization_method);switch lower(obj.optimization_method)case 'laplacian'optimized_mesh = obj.laplacian_smoothing();case 'optimization-based'optimized_mesh = obj.optimization_based_smoothing();case 'edge_flip'optimized_mesh = obj.edge_flip_optimization();otherwiseerror('不支持的优化方法: %s', obj.optimization_method);endfprintf('网格优化完成\n');endfunction optimized_mesh = laplacian_smoothing(obj)% Laplacian平滑nodes = obj.mesh.nodes;elements = obj.mesh.elements;for iter = 1:obj.max_iterationsnew_nodes = nodes;for i = 1:size(nodes, 1)% 找到相邻节点neighbor_indices = obj.find_vertex_neighbors(i);if ~isempty(neighbor_indices)% Laplacian平滑: 新位置 = 相邻节点平均位置new_nodes(i, :) = mean(nodes(neighbor_indices, :), 1);endend% 检查质量改进temp_mesh = Mesh3D(new_nodes, elements);temp_mesh.calculate_quality();if mean(temp_mesh.element_quality) > mean(obj.mesh.element_quality)nodes = new_nodes;elsebreak; % 质量不再改进,停止迭代endif mod(iter, 10) == 0fprintf('迭代 %d: 平均质量 = %.3f\n', iter, mean(temp_mesh.element_quality));endendoptimized_mesh = Mesh3D(nodes, elements);optimized_mesh.calculate_quality();endfunction neighbor_indices = find_vertex_neighbors(obj, vertex_index)% 找到顶点的相邻节点neighbor_indices = [];% 找到包含该顶点的所有单元[row, ~] = find(obj.mesh.elements == vertex_index);containing_elements = unique(row);% 收集相邻顶点for i = 1:length(containing_elements)elem = obj.mesh.elements(containing_elements(i), :);neighbor_indices = [neighbor_indices; elem(elem ~= vertex_index)];endneighbor_indices = unique(neighbor_indices);endfunction optimized_mesh = optimization_based_smoothing(obj)% 基于优化的平滑方法fprintf('基于优化的网格平滑...\n');% 这里实现基于质量度量的优化算法% 可以使用梯度下降、牛顿法等nodes = obj.mesh.nodes;elements = obj.mesh.elements;% 简化实现:多次应用Laplacian平滑optimized_mesh = obj.laplacian_smoothing();endfunction optimized_mesh = edge_flip_optimization(obj)% 边翻转优化fprintf('边翻转优化...\n');nodes = obj.mesh.nodes;elements = obj.mesh.elements;improved = true;iteration = 0;while improved && iteration < obj.max_iterationsimproved = false;% 检查每条内部边edges = obj.get_internal_edges();for i = 1:size(edges, 1)edge = edges(i, :);% 找到共享该边的单元[elem1, elem2] = obj.find_edge_elements(edge);if ~isempty(elem1) && ~isempty(elem2)% 检查边翻转是否能提高质量if obj.should_flip_edge(edge, elem1, elem2)% 执行边翻转[elements, success] = obj.flip_edge(edge, elem1, elem2, elements);if successimproved = true;endendendenditeration = iteration + 1;fprintf('边翻转迭代 %d: 改进了 %d 条边\n', iteration, improved);endoptimized_mesh = Mesh3D(nodes, elements);optimized_mesh.calculate_quality();endfunction edges = get_internal_edges(obj)% 获取所有内部边edges = [];for i = 1:size(obj.mesh.elements, 1)tetra = obj.mesh.elements(i, :);% 四面体的6条边edges = [edges; tetra([1,2]); tetra([1,3]); tetra([1,4]);tetra([2,3]); tetra([2,4]); tetra([3,4])];endedges = unique(sort(edges, 2), 'rows');endfunction [elem1, elem2] = find_edge_elements(obj, edge)% 找到共享边的两个单元elem1 = []; elem2 = [];count = 0;for i = 1:size(obj.mesh.elements, 1)tetra = obj.mesh.elements(i, :);if all(ismember(edge, tetra))count = count + 1;if count == 1elem1 = i;elseif count == 2elem2 = i;return;endendendendend
end

6. 完整示例和使用案例

% 三维非结构化网格生成主程序
function main_3d_unstructured_mesh_generation()% 清除环境clear; close all; clc;fprintf('=== 三维非结构化网格生成系统 ===\n\n');% 1. 创建示例几何(球体)fprintf('步骤1: 创建示例几何\n');[sphere_nodes, sphere_faces] = create_sphere_geometry(1.0, 50);% 2. 使用Delaunay方法生成网格fprintf('\n步骤2: Delaunay三角剖分\n');delaunay_generator = DelaunayMeshGenerator(sphere_nodes, sphere_faces);delaunay_mesh = delaunay_generator.generate_mesh();% 3. 使用前沿推进法生成网格fprintf('\n步骤3: 前沿推进法\n');af_generator = AdvancingFrontMeshGenerator(sphere_nodes, sphere_faces);af_mesh = af_generator.generate_mesh();% 4. 网格优化fprintf('\n步骤4: 网格优化\n');optimizer = MeshOptimizer(delaunay_mesh);optimized_mesh = optimizer.optimize('laplacian');% 5. 结果比较和可视化fprintf('\n步骤5: 结果比较\n');% 显示各方法结果figure('Position', [100, 100, 1500, 400]);subplot(1, 3, 1);delaunay_mesh.visualize();title('Delaunay方法');subplot(1, 3, 2);af_mesh.visualize();title('前沿推进法');subplot(1, 3, 3);optimized_mesh.visualize(true);title('优化后网格');% 性能比较fprintf('\n=== 网格质量比较 ===\n');fprintf('%-15s %-8s %-8s %-8s %-8s\n', ...'方法', '节点数', '单元数', '平均质量', '最差质量');fprintf('%-15s %-8d %-8d %-8.3f %-8.3f\n', ...'Delaunay', size(delaunay_mesh.nodes, 1), size(delaunay_mesh.elements, 1), ...mean(delaunay_mesh.element_quality), min(delaunay_mesh.element_quality));fprintf('%-15s %-8d %-8d %-8.3f %-8.3f\n', ...'前沿推进', size(af_mesh.nodes, 1), size(af_mesh.elements, 1), ...mean(af_mesh.element_quality), min(af_mesh.element_quality));fprintf('%-15s %-8d %-8d %-8.3f %-8.3f\n', ...'优化后', size(optimized_mesh.nodes, 1), size(optimized_mesh.elements, 1), ...mean(optimized_mesh.element_quality), min(optimized_mesh.element_quality));fprintf('\n=== 网格生成完成 ===\n');
end% 创建球体几何函数
function [nodes, faces] = create_sphere_geometry(radius, resolution)% 创建球体几何[x, y, z] = sphere(resolution);nodes = [x(:), y(:), z(:)] * radius;% 创建三角面片faces = [];for i = 1:resolutionfor j = 1:resolution% 球面的三角化i1 = i;i2 = mod(i, resolution) + 1;j1 = j;j2 = mod(j, resolution) + 1;idx1 = (i1-1)*(resolution+1) + j1;idx2 = (i1-1)*(resolution+1) + j2;idx3 = (i2-1)*(resolution+1) + j1;idx4 = (i2-1)*(resolution+1) + j2;faces = [faces; idx1, idx2, idx3];faces = [faces; idx2, idx4, idx3];endendfprintf('创建球体几何: 半径=%.1f, 分辨率=%d, 节点数=%d, 面数=%d\n', ...radius, resolution, size(nodes, 1), size(faces, 1));
end% 复杂几何示例:圆柱体
function [nodes, faces] = create_cylinder_geometry(radius, height, resolution)% 创建圆柱体几何fprintf('创建圆柱体几何...\n');theta = linspace(0, 2*pi, resolution+1);theta = theta(1:end-1);% 底部圆盘bottom_nodes = [radius * cos(theta(:)), radius * sin(theta(:)), zeros(resolution, 1)];top_nodes = [radius * cos(theta(:)), radius * sin(theta(:)), height * ones(resolution, 1)];% 中心点bottom_center = [0, 0, 0];top_center = [0, 0, height];nodes = [bottom_center; top_center; bottom_nodes; top_nodes];% 创建三角面片faces = [];% 底部面for i = 1:resolutioni1 = 1; % 底部中心i2 = 2 + i;i3 = 2 + mod(i, resolution) + 1;faces = [faces; i1, i2, i3];end% 顶部面for i = 1:resolutioni1 = 2; % 顶部中心i2 = 2 + resolution + i;i3 = 2 + resolution + mod(i, resolution) + 1;faces = [faces; i1, i3, i2]; % 注意顶点顺序(法向量方向)end% 侧面for i = 1:resolutioni1 = 2 + i;i2 = 2 + mod(i, resolution) + 1;i3 = 2 + resolution + i;i4 = 2 + resolution + mod(i, resolution) + 1;faces = [faces; i1, i2, i3];faces = [faces; i2, i4, i3];endfprintf('圆柱体几何: 半径=%.1f, 高度=%.1f, 节点数=%d, 面数=%d\n', ...radius, height, size(nodes, 1), size(faces, 1));
end

参考代码 三维模型非结构化网格生成 www.youwenfan.com/contentcni/59857.html

三维非结构化网格生成方案提供了:

  1. 多种网格生成算法:Delaunay三角剖分、前沿推进法、八叉树法
  2. 网格质量评估:多种质量指标和可视化
  3. 网格优化技术:Laplacian平滑、边翻转优化等
  4. 几何支持:球体、圆柱体等基本几何形状
  5. 完整的可视化:网格显示、质量分布等

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/916050.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Windows 环境变量配置

在实际项目开发中,往往需要配置各种各样的环境变量。在使用部分windows电脑时,无法获取Admin权限,使用页面配置环境变量会受到限制。这时我们可以使用CMD命令行进行环境变量配置,具体配置步骤如下: 1.打开CMD窗口…

React自定义同步状态Hook - 详解

React自定义同步状态Hook - 详解pre { white-space: pre !important; word-wrap: normal !important; overflow-x: auto !important; display: block !important; font-family: "Consolas", "Monaco&qu…

Playwright MCP浏览器自动化指南 - 详解

Playwright MCP浏览器自动化指南 - 详解pre { white-space: pre !important; word-wrap: normal !important; overflow-x: auto !important; display: block !important; font-family: "Consolas", "Mo…

完整教程:【C++】STL简介+编码表+string引入

完整教程:【C++】STL简介+编码表+string引入pre { white-space: pre !important; word-wrap: normal !important; overflow-x: auto !important; display: block !important; font-family: "Consolas", &qu…

付费的网站推广该怎么做合肥网络公司 网站建设

摘要 spark的调度一直是我想搞清楚的东西&#xff0c;以及有向无环图的生成过程、task的调度、rdd的延迟执行是怎么发生的和如何完成的&#xff0c;还要就是RDD的compute都是在executor的哪个阶段调用和执行我们定义的函数的。这些都非常的基础和困难。花一段时间终于弄白了其中…

SpringBootMVC相关内容

SpringMVC 基于java实现MVC模型的轻量级Web框架 做Web程序开发 当我们的浏览器发出一个请求给到后端服务器以后,由servlet负责处理请求, servlet只是能够接收请求产生响应,不能进行真正的数据处理 于是将后端服务拆…

小柏实战学习Liunx(图文教程三十五)

小柏实战学习Liunx(图文教程三十五)本节课主题:上一节课,docker镜像加速服务器搭建完成后,本节课需要配置域名,并使用nginx端口转发; 前言:一定要知道每一个命令是啥意思,并且要学会看报错信息,学会使用AI。1. 更新系…

【含文档+PPT+源码】基于GPT+SpringBoot的个人健康管理与咨询架构设计与建立

pre { white-space: pre !important; word-wrap: normal !important; overflow-x: auto !important; display: block !important; font-family: "Consolas", "Monaco", "Courier New", …

基于节流的流水线并行推理优化——gLLM

通过token节流实现LLM流水线推理服务的全局负载均衡 背景 vllm中的流水线调度策略 在当前的vllm调度中,对于pipeline并行的实现还不完善,存在大量气泡,当前在vllm中的流水线并行调度如下。 以4卡的流水线并行推理为…

Corral the Cows

点评:我认为是一道很不错的题,将很多基础的算法融汇到一起。 题目链接:https://vjudge.net/problem/POJ-3179#author=GPT_zh 题目描述:农夫约翰希望为他的奶牛建造一个围栏。由于奶牛是挑剔的动物,它们要求围栏是…

个人网站开发 怎么赚钱tp5被黑做的网站全变成首页

中秋小长假“余额”就剩半天了尽管心里有太多不舍也要调整自己毕竟假期都是短暂的工作才是职场人生的常态为了尽快消除“假日综合症”e小安贴心送上小文一篇小伙伴们赶紧“脉动”回来吧各类web应用充斥在我们的网络生活中&#xff0c;但是因为开发者安全意识不强而导致的安全问…

HarmonyOS 5 通知与语音能力开发实战:从消息推送到智能语音交互

一、通知系统开发全面解析 1. 通知权限与基础配置 在 module.json5中声明通知和语音相关权限: {"module": {"requestPermissions": [{"name": "ohos.permission.NOTIFICATION_CON…

Keithley 万用表里测电阻分成两种模式

Keithley 万用表里测电阻分成两种模式前面板操作(以常见型号为例)开机,确认表正常自检通过。在 功能选择区(Function/Measure 按键区):找到 Ω(Ohms / RES) 按键,按下后进入电阻测量模式。如果你的型号没有单…

HarmonyOS 5 Native与ArkTS混合开发实战:跨语言高性能组件开发

一、混合开发架构与原理 1. 混合开发核心架构 HarmonyOS混合开发采用分层设计:ArkTS层:UI组件和业务逻辑,使用声明式开发范式 Node-API桥接层:提供类型安全的跨语言通信机制 Native层:C/C++高性能计算和系统级功能…

实战:基于HarmonyOS 5构建分布式聊天通讯应用

1 HarmonyOS 5分布式通信基础 HarmonyOS 5为聊天通讯应用开发带来了革命性的分布式能力,让开发者能够构建真正跨设备、无缝协同的通信体验。本节将介绍如何利用HarmonyOS 5的分布式架构和API 12+特性来打造高性能聊天…

Java-Eclipse使用-多维数组的使用

Java-Eclipse使用-多维数组的使用Day08 1.多维数组的打印方式 2.多维数组的实操使用 3.多维数组的实操使用 4.多维数组的实操使用 明天会继续进行更新,二维数组的打印不太理解。

中国建设银行官方网站 认证网站运营和seo的区别

大家想必都知道&#xff0c;数组和链表的搜索操作的时间复杂度都是O(N)的&#xff0c;在数据量大的时候是非常耗时的。对于数组来说&#xff0c;我们可以先排序&#xff0c;然后使用二分搜索&#xff0c;就能够将时间复杂度降低到O(logN)&#xff0c;但是有序数组的插入是一个O…

HarmonyOS 5 动画开发实战:从基础动效到高级交互动画

🎯 一、HarmonyOS动画系统概述 HarmonyOS提供了强大而灵活的动画系统,支持多种动画类型和交互效果:动画类型 适用场景 核心API属性动画 组件尺寸、位置、透明度等属性变化 animateTo(), Animation()转场动画 组件出…

HarmonyOS 5 高级动效实战:粒子系统、路径动画与物理动效开发

一、粒子系统动画开发 粒子动画通过大量微小元素的运动创造复杂视觉效果,如雨雪、火焰、爆炸等自然现象。 1. 基础粒子系统实现 import particle from @ohos.graphics.particle; import { BusinessError } from @ohos…

从范德蒙德矩阵聊开去.

范德蒙德矩阵 : \(\bm{V}=\left[ \begin{array}{ccc}1 & x_0 & x_0^2 & \cdots & x_0^{n-1} \\1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\1 & x_2 & x_2^2 & \cdots &…