Threading 串行VS并发
IO 密集型
结果
>>> 串行开始...
下载https://www.baidu.com/成功,状态码为200
下载https://www.sina.com.cn/成功,状态码为200
下载https://www.bilibili.com/成功,状态码为412
耗时:0.42061281204223633
>>> 串行结束...
>>> 并发开始...
下载https://www.baidu.com/成功,状态码为200
下载https://www.sina.com.cn/成功,状态码为200
下载https://www.bilibili.com/成功,状态码为412
耗时:0.1446540355682373
>>> 并发结束...
示例代码
# -*- coding: utf-8 -*-
# I/O密集时多线程例子:一边打印一边下载网页内容 串行VS并发
import requests
import threading
import time# 用几个响应速度较快的真实网页
urls = ["https://www.baidu.com/","https://www.sina.com.cn/","https://www.bilibili.com/"
]def download(url):try:r = requests.get(url, timeout=3)print(f"下载{url}成功,状态码为{r.status_code}")except requests.RequestException as e:print(e)# ===== 串行
def run_serial():print(">>> 串行开始...")start_time = time.time()for url in urls:download(url)end_time = time.time()print(f"耗时:{end_time - start_time}")print(">>> 串行结束...")# ==== 并发(多线程)
def run_threading():print(">>> 并发开始...")start_time = time.time()threads = []for url in urls:t = threading.Thread(target=download, args=(url,)) # target=函数名,args=函数参数(元组)threads.append(t)t.start() # 线程开始执行for t in threads:t.join() # join 主线程等待子线程执行完end_time = time.time()print(f"耗时:{end_time - start_time}")print(">>> 并发结束...")if __name__ == '__main__':run_serial()run_threading()
计算密集型
结果
CPU密集任务运行时,并行并不会比串行快多少,达不到加速的效果
>>> 开始串行...
>>> 串行耗时: 73.33004999160767 秒
>>> 开始并发...
>>> 并发耗时: 73.11574292182922 秒
示例代码
# -*- coding: utf-8 -*-
import mathimport requests
import threading
import time# “烧 CPU”的函数:对一大批数字做平方根运算(math.sqrt())N = 500000000def cpu_task():total = 0for i in range(N):total += math.sqrt(i)return total# ==== 串行
def run_serial():print(">>> 开始串行...")start_time = time.time()cpu_task()cpu_task()cpu_task()print(">>> 串行耗时:", time.time() - start_time, "秒")# ==== 并发
def run_threaded():print(">>> 开始并发...")start_time = time.time()threas = []for _ in range(3):t = threading.Thread(target=cpu_task)t.start()threas.append(t)for t in threas:t.join()print(">>> 并发耗时:", time.time() - start_time, "秒")if __name__ == '__main__':run_serial()run_threaded()
总结:多线程的优势与局限
I/O 密集 | 请求网页、读写文件、等待数据库 | ✅ 非常适合 |
---|---|---|
CPU 密集 | 图像处理、大量计算、加密解密 | ❌ 会被 GIL 限制,不如用多进程 |
少量任务 | 任务不多,时间也短 | ⚠️ 线程切换反而是开销 |
并发数量极大 | 上千并发、强隔离 | ⚠️ 推荐协程/进程池,线程管理成本高 |
参考来源
https://zhuanlan.zhihu.com/p/1923003098605033459