【C/C++】自定义类型:结构体

文章目录

  • 前言
  • 自定义类型:结构体
    • 1.结构体类型的声明
      • 1.1 结构体回顾
        • 1.1.1 结构的声明
      • 1.1.2 结构体变量的创建和初始化
      • 1.2 结构的特殊声明
      • 1.3 结构的自引用
    • 2.结构体内存对齐
      • 2.1 对⻬规则
      • 2.2 为什么存在内存对齐?
      • 2.3 修改默认对⻬数
    • 3. 结构体传参
    • 4.结构体实现位段
      • 4.1 什么是位段
      • 4.2 位段的内存分配
      • 4.3 位段的跨平台问题
      • 4.4 位段的应用
      • 4.5 位段使用的注意事项

前言

集成开发环境为vs2022

c语言有内置类型(char short int long flaot double long double),也有自定义类型—结构体(struct) 枚举(enum) 联合体(union) 本篇幅介绍结构体

自定义类型:结构体

1.结构体类型的声明

前⾯我们在学习操作符的时候,已经学习了结构体的知识,这⾥稍微复习⼀下。

1.1 结构体回顾

结构是⼀些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量。

1.1.1 结构的声明
struct tag//标签名
{member-list;//成员 1个或多个
}variable-list;//变量列表

例如描述⼀个学⽣:

struct Stu
{char name[20];//名字 int age;//年龄 char sex[5];//性别 char id[20];//学号 
}; //分号不能丢 
struct Book b2;//全局变量
int main()
{struct Book b1;//局部变量return 0;
}

1.1.2 结构体变量的创建和初始化

#include <stdio.h>
struct Stu
{char name[20];//名字 int age;//年龄 char sex[5];//性别 char id[20];//学号 
};
int main()
{//按照结构体成员的顺序初始化 struct Stu s = { "张三", 20, "男", "20230818001" };printf("name: %s\n", s.name);printf("age : %d\n", s.age);printf("sex : %s\n", s.sex);printf("id : %s\n", s.id);//按照指定的顺序初始化 struct Stu s2 = { .age = 18, .name = "lisi", .id = "20230818002", .sex = 
"⼥" };printf("name: %s\n", s2.name);printf("age : %d\n", s2.age);printf("sex : %s\n", s2.sex);printf("id : %s\n", s2.id);return 0;
}

1.2 结构的特殊声明

在声明结构的时候,可以不完全的声明。

⽐如:

//匿名结构体类型 
struct//这里不写名字
{int a;char b;float c;
}s;//可以在这初始化
//}s={'x',100.3.14};
int main()
{printf("%c %d %lf",s.c,s.i,s.d);
}

匿名结构体也可以重新命名

typedef struct
{char c;int i;double d;
}s;

上⾯的两个结构在声明的时候省略掉了结构体标签(tag)。 那么问题来了?

//在上⾯代码的基础上,下⾯的代码合法吗? 
p = &x;

警告:

编译器会把上⾯的两个声明当成完全不同的两个类型,所以是非法的。

匿名的结构体类型,如果没有对结构体类型重命名的话,基本上只能使⽤⼀次。

1.3 结构的自引用

在结构中包含⼀个类型为该结构本⾝的成员是否可以呢?

⽐如,定义⼀个链表的节点

在这之前先讲一下链表

数据结构–其实是数据在内存中的存储和组织的结构 数据有多种

线性数据结构:顺序表,链表,栈,队列

顺序表–数组

在这里插入图片描述

链表

在这里插入图片描述

//定义一个链表节点
struct Node
{int data;struct Node next;
};

上述代码正确吗?如果正确,那 sizeof(struct Node) 是多少?

仔细分析,其实是不⾏的,因为⼀个结构体中再包含⼀个同类型的结构体变量,这样结构体变量的⼤ ⼩就会⽆穷的⼤,是不合理的。

正确的⾃引⽤⽅式:

struct Node{int data;//数据struct Node* next;//指针
};

在结构体⾃引⽤使⽤的过程中,夹杂了 typedef 对匿名结构体类型重命名,也容易引⼊问题,看看 下⾯的代码,可⾏吗?

typedef struct
{int data;Node* next;
}Node;

答案是不⾏的,因为Node是对前⾯的匿名结构体类型的重命名产⽣的,但是在匿名结构体内部提前使 ⽤Node类型来创建成员变量,这是不⾏的。

匿名结构体类型不能实现结构体的自引用

解决⽅案如下:定义结构体不要使用匿名结构体了

typedef struct Node
{int data;struct Node* next;
}Node;
//上述代码等价于下边代码
struct Node
{int data;struct Node* next;
}
typedef struct Node Node;

2.结构体内存对齐

我们已经掌握了结构体的基本使⽤了。

现在我们深⼊讨论⼀个问题:计算结构体的⼤⼩。

这也是⼀个特别热⻔的考点: 结构体内存对⻬

2.1 对⻬规则

⾸先得掌握结构体的对⻬规则:

1.结构体的第1个成员对⻬到和结构体变量起始位置偏移量为0的地址处

2.从第2个成员变量开始,都要对⻬到某个对⻬数的整数倍的地址处。

对⻬数=编译器默认的⼀个对⻬数与该成员变量⼤⼩的较⼩值

VS 中默认的值为 8

Linux中gcc没有默认对⻬数,对⻬数就是成员⾃⾝的⼤⼩

3.结构体总大小为最大对齐数(结构体中每个成员变量都有⼀个对⻬数,所有对⻬数中最⼤的)的 整数倍。

4.如果嵌套了结构体的情况,嵌套的结构体成员对⻬到⾃⼰的成员中最⼤对⻬数的整数

//练习1 
struct S1
{       //   默认   对齐数char c1;// 1 8     1int i;//   4 8     4char c2;// 1 8     1
};
printf("%d\n", sizeof(struct S1));
//练习2 
struct S2
{char c1;char c2;int i;
};
printf("%d\n", sizeof(struct S2));
//练习3 
struct S3
{double d;char c;int i;
};
printf("%d\n", sizeof(struct S3));
//练习4-结构体嵌套问题 
struct S4
{char c1;struct S3 s3;double d;
};
printf("%d\n", sizeof(struct S4));

在这里插入图片描述

2.2 为什么存在内存对齐?

⼤部分的参考资料都是这样说的:

1. 平台原因(移植原因):

不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定 类型的数据,否则抛出硬件异常。

2.性能原因

数据结构(尤其是栈)应该尽可能地在⾃然边界上对⻬。原因在于,为了访问未对⻬的内存,处理器需要 作两次内存访问;⽽对⻬的内存访问仅需要⼀次访问。假设⼀个处理器总是从内存中取8个字节,则地 址必须是8的倍数。如果我们能保证将所有的double类型的数据的地址都对⻬成8的倍数,那么就可以 ⽤⼀个内存操作来读或者写值了。否则,我们可能需要执⾏两次内存访问,因为对象可能被分放在两 个8字节内存块中。

总体来说:结构体的内存对⻬是拿空间来换取时间的做法。

例如

struct S
{char c;//1int i;//4 
};

在这里插入图片描述

那在设计结构体的时候,我们既要满⾜对⻬,⼜要节省空间,如何做到:

让占⽤空间⼩的成员尽量集中在⼀起

//例如: 
struct S1
{char c1;int i;char c2;
};
struct S2
{char c1;char c2;int i;
};

S1 和 S2 类型的成员⼀模⼀样,但是 S1 和 S2 所占空间的⼤⼩有了⼀些区别。

2.3 修改默认对⻬数

#pragma 这个预处理指令,可以改变编译器的默认对⻬数。

#include <stdio.h>
#pragma pack(1)//设置默认对⻬数为1  一般是2的次方数 linux中不能改
struct S
{char c1;int i;char c2;
};
#pragma pack()//取消设置的对⻬数,还原为默认 
int main()
{//输出的结果是什么? 6printf("%d\n", sizeof(struct S));return 0;
}

结构体在对⻬⽅式不合适的时候,我们可以⾃⼰更改默认对⻬数。

3. 结构体传参

struct S
{int data[1000];//4000字节int num;
};
struct S s = {{1,2,3,4}, 1000};
//结构体传参 
void print1(struct S s)//s先拷贝,占用内存很大
{//for循环打印数组printf("%d\n", s.num);
}
//结构体地址传参 
void print2(const struct S* ps)
{printf("%d\n", ps->num);printf("%d\n",ps->data[i]);
}
int main()
{print1(s); //传结构体 print2(&s); //传地址 return 0;
}

上⾯的 print1 和 print2 函数哪个好些?

答案是:首选print2函数

原因:

函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递⼀个结构体对象的时候,结构体过⼤,参数压栈的的系统开销⽐较⼤,所以会导致性能的下降。
结论:结构体传参的时候,要传结构体的地址。

4.结构体实现位段

4.1 什么是位段

位段的声明和结构是类似的,有两个不同:

1.位段的成员必须是 int、unsigned int 或signed int ,在C99中位段成员的类型也可以 选择其他整型家族类型,⽐如:char

2.位段的成员名后边有⼀个冒号⼀个数字

⽐如:

struct A
{int _a:2;//只占两个bit位int _b:5;int _c:10;int _d:30;
};
struct s
{int _a;//4字节 32bit 可以节省30个字节int _b;int _c;int _d;//00   0//01   1//10   2//11   3
}

A就是⼀个位段类型。

位段是专门用来节省内存的

那位段A所占内存的⼤⼩是多少?

    // %zd            8字节
printf("%d\n", sizeof(struct A));//

在这里插入图片描述

4.2 位段的内存分配

1.位段的成员可以是 int unsigned int signed int 或者是 char 等类型

2.位段的空间上是按照需要以**4个字节( int )或者1个字节( char )**的⽅式来开辟的。

3.位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使⽤位段。

//⼀个例⼦ 
struct S
{char a:3;char b:4;char c:5;char d:4;
};
struct S s = {0};
s.a = 10;//00001010
s.b = 12;//00001100
s.c = 3;//00000011
s.d = 4;//00000100
//空间是如何开辟的? 

在这之前我们先要了解一下内存的使用顺序

1.申请到的一块内存中,从左向右使用,还是从右向左使用,是不确定的 vs是从右向左

2.剩余空间,不是下一个成员使用的时候,是浪费呢?还是继续使用? vs是浪费

在这里插入图片描述

在这里插入图片描述

4.3 位段的跨平台问题

  1. int位段被当成有符号数还是⽆符号数是不确定的。
  2. 位段中最⼤位的数⽬不能确定。(16位机器最⼤16,32位机器最⼤32,写成27,在16位机器会出问题。
  3. 位段中的成员在内存中从左向右分配,还是从右向左分配,标准尚未定义。
  4. 当⼀个结构包含两个位段,第⼆个位段成员⽐较⼤,⽆法容纳于第⼀个位段剩余的位时,是舍弃剩余的位是利⽤,这是不确定的。
    总结:
    跟结构相⽐,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。

4.4 位段的应用

下图是⽹络协议中,IP数据报的格式,我们可以看到其中很多的属性只需要⼏个bit位就能描述,这⾥ 使⽤位段,能够实现想要的效果,也节省了空间,这样⽹络传输的数据报⼤⼩也会较⼩⼀些,对⽹络 的畅通是有帮助的。

在这里插入图片描述

4.5 位段使用的注意事项

**位段的⼏个成员共有同⼀个字节,这样有些成员的起始位置并不是某个字节的起始位置,那么这些位置处是没有地址的。内存中每个字节分配⼀个地址,⼀个字节内部的bit位是没有地址的。
以不能对位段的成员使⽤&操作符,这样就不能使⽤scanf直接给位段的成员输⼊值,**只能是先输⼊放在⼀个变量中,然后赋值给位段的成员。

一个字节一个地址

struct A
{int _a : 2;int _b : 5;int _c : 10;int _d : 30;
};
int main()
{struct A sa = {0};scanf("%d", &sa._b);//这是错误的 //正确的⽰范 int b = 0;scanf("%d", &b);sa._b = b;return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/905430.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PPO算法:一种先进的强化学习策略

什么是PPO算法&#xff1f; PPO&#xff08;Proximal Policy Optimization&#xff09;是一种增强学习算法&#xff0c;主要应用于解决连续控制任务。PPO算法在2017年由OpenAI提出&#xff0c;旨在解决传统策略梯度方法在连续控制任务中面临的挑战。PPO算法通过引入一个近似目…

OpenCV实现数字水印的相关函数和示例代码

OpenCV计算机视觉开发实践&#xff1a;基于Qt C - 商品搜索 - 京东 实现数字水印的相关函数 用OpenCV来实现数字水印功能&#xff0c;需要使用一些位操作函数&#xff0c;我们需要先了解一下这些函数。 1. bitwise_and函数 bitwise_and函数是OpenCV中的位运算函数之一&…

基于Python的计算机科学研究话题管理系统的设计与实现 - 爬虫

标题:基于Python的计算机科学研究话题管理系统的设计与实现 - 爬虫 内容:1.摘要 本文聚焦于基于Python的计算机科学研究话题管理系统的爬虫部分。背景是随着计算机科学研究的快速发展&#xff0c;相关话题数据海量且分散&#xff0c;人工管理效率低。目的是设计并实现一个能高…

告别手动解析!借助 CodeBuddy 快速开发网页源码提取工具

作为一名长期从事 Web 开发的程序员&#xff0c;我们在日常工作中&#xff0c;时不时会需要查看网页的源代码。这么做的目的通常是为了排查前端渲染的问题、分析接口返回的数据结构&#xff0c;或者就是单纯地想快速提取页面中的某些信息&#xff0c;比如文章链接、图片地址&am…

为什么要在 input() 后加 .strip()?

strip() 是 Python 字符串的一个方法&#xff0c;用于去除字符串开头和结尾的空白字符&#xff08;包括空格、制表符 \t、换行符 \n 等&#xff09;。 为什么要在 input() 后加 .strip()&#xff1f; 用户在输入时&#xff0c;可能会不小心在开头或结尾输入空格&#xff0c;例…

【日撸 Java 300行】Day 14(栈)

目录 Day 14&#xff1a;栈 一、栈的基本知识 二、栈的方法 1. 顺序表实现栈 2. 入栈 3. 出栈 三、代码及测试 拓展&#xff1a; 小结 Day 14&#xff1a;栈 Task&#xff1a; push 和 pop 均只能在栈顶操作.没有循环, 时间复杂度为 O(1). 一、栈的基本知识 详细的介…

dotnet core c#调用Linux c++导出函数

1.声明C++导出函数 platform_export.h // // Created by dev on 5/6/25. //#ifndef PLATFORM_EXPORT_H #define PLATFORM_EXPORT_H #if defined(_WIN32)#ifdef LIB_EXPORTS#define LIB_API __declspec(dllimport)#else#define LIB_API __declspec(dllimport)#endif #else#ifde…

SparkSQL操作Mysql

前面的课程我们学习了如何从csv文件中读入数据&#xff0c;这相当于是对csv这种类型的数据的操作。那么接下来&#xff0c;我们一起看看&#xff0c;如何写Spark程序来操作mysql数据库。先来给大家介绍一下我们这节课的主要学习内容&#xff1a; &#xff08;1&#xff09;安装…

语言学中的对象语言与元语言 | 概念 / 区别 / 实例分析

注&#xff1a;英文引文&#xff0c;机翻未校。 语言学中的“对象语言”和“元语言” 刘福长 现代外语 1989年第3期&#xff08;总第45期&#xff09; 在阅读语言学著作时&#xff0c;我们有时会遇到这样两个术语&#xff1a;对象语言&#xff08;object language&#xff0…

livenessProbe 和 readinessProbe 最佳实践

在 Kubernetes 中&#xff0c;livenessProbe 和 readinessProbe 是确保应用高可用性的关键机制&#xff0c;但配置不当可能导致应用频繁重启或流量中断。以下是配置这两个探针的最佳实践&#xff1a; 1. 核心区别与作用 探针类型目的失败后果livenessProbe检测应用是否 存活&…

集成管理工具Gitlab

GitLab 是一个功能强大的开源代码托管和协作平台&#xff0c;集成 GitLab 可以显著提升团队的开发效率。下面我将为你介绍如何集成 GitLab&#xff0c;包括安装配置和基本使用流程。 一、GitLab 安装与配置 GitLab 有多种安装方式&#xff0c;推荐使用官方 Omnibus 包安装&am…

Electron-Vue3、Electron-React、Electron-Angular打造舆情监控系统项目

Electron是一个跨平台的桌面应用开发框架&#xff0c;可以让我们用html css js的技术开发跨平台桌面上可以安装的软件。视频详解: Electron教程 ElectronVue跨平台桌面软件开发教程-2024年更新&#xff08;大地老师&#xff09; 从Electron环境搭建开始到手把手教你调试、Elect…

08.webgl_buffergeometry_attributes_none ,three官方示例+编辑器+AI快速学习

本实例主要讲解内容 这个Three.js示例展示了无属性几何体渲染技术&#xff0c;通过WebGL 2的gl_VertexID特性和伪随机数生成算法&#xff0c;在着色器中动态计算顶点位置和颜色&#xff0c;而不需要在CPU端预先定义几何体数据。 核心技术包括&#xff1a; WebGL 2的顶点ID特…

Ubuntu 22.04搭建OpenStreeMap地址解析服务(保姆级教程)

1.数据准备 1.1.全球数据 下载地址&#xff1a;https://planet.openstreetmap.org/ 1.2.特定区域的数据 下载地址&#xff1a;Geofabrik Download Server 2.安装必要的软件包 2.1.更新系统软件包 sudo apt updatesudo apt upgrade 2.2.安装所需要的软件包 执行下面的命…

Ubuntu 22.04.5 LTS上部署Docker及相关优化

以下是在Ubuntu 22.04.5 LTS上部署Docker及相关优化的步骤&#xff1a; 安装Docker 更新系统&#xff1a;在安装Docker之前&#xff0c;先确保系统是最新的&#xff0c;执行以下命令&#xff1a;sudo apt update sudo apt upgrade -y安装依赖包&#xff1a;安装一些必要的依赖…

React -> AI组件 -> 调用Ollama模型, qwen3:1.7B非常聪明

使用 React 搭建一个现代化的聊天界面&#xff0c;支持与 Ollama 本地部署的大语言模型进行多轮对话。界面清爽、功能完整&#xff0c;支持 Markdown 渲染、代码高亮、<think> 隐藏思考标签、流式渐进反馈、暗黑模式适配等特性。 &#x1f9e9; 核心功能亮点 ✅ 模型选择…

vue2/3 中使用 @vue-office/docx 在网页中预览(docx、excel、pdf)文件

1. 安装依赖&#xff1a; #docx文档预览组件npm install vue-office/docx vue-demi0.14.6#excel文档预览组件npm install vue-office/excel vue-demi0.14.6#pdf文档预览组件npm install vue-office/pdf vue-demi0.14.6 vue2.6版本或以下还需要额外安装 vue/composition-api …

【应用密码学】实验五 公钥密码2——ECC

一、实验要求与目的 1.复习CCC基本概念&#xff0c;并根据实验平台提供的资料完成验证性实验。 2.编程练习&#xff1a;以书上例题小模数p为例编程实现ECC的基本运算规则。 二、实验内容与步骤记录&#xff08;只记录关键步骤与结果&#xff0c;可截图&#xff0c;但注意排版…

rust-candle学习笔记9-使用tokenizers加载qwen3分词,使用分词器处理文本

参考&#xff1a;about-pytorch&#xff0c; about-tokenizers 在魔搭社区链接下载qwen3的tokenizer.json文件 添加依赖库&#xff1a; cargo add tokenizers tokenizers库初体验&#xff1a; use tokenizers::tokenizer::{self, Result, Tokenizer};fn main() -> Resu…

【MySQL】存储引擎 - ARCHIVE、BLACKHOLE、MERGE详解

&#x1f4e2;博客主页&#xff1a;https://blog.csdn.net/2301_779549673 &#x1f4e2;博客仓库&#xff1a;https://gitee.com/JohnKingW/linux_test/tree/master/lesson &#x1f4e2;欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff01; &…