import  face_alignment
import  skimage. io
import  numpy
from  argparse import  ArgumentParser
from  skimage import  img_as_ubyte
from  skimage. transform import  resize
from  tqdm import  tqdm
import  os
import  numpy as  np
import  warnings
warnings. filterwarnings( "ignore" ) 
def  extract_bbox ( frame,  fa) : if  max ( frame. shape[ 0 ] ,  frame. shape[ 1 ] )  >  640 : scale_factor =   max ( frame. shape[ 0 ] ,  frame. shape[ 1 ] )  /  640.0 frame =  resize( frame,  ( int ( frame. shape[ 0 ]  /  scale_factor) ,  int ( frame. shape[ 1 ]  /  scale_factor) ) ) frame =  img_as_ubyte( frame) else : scale_factor =  1 frame =  frame[ . . . ,  : 3 ] bboxes =  fa. face_detector. detect_from_image( frame[ . . . ,  : : - 1 ] ) if  len ( bboxes)  ==  0 : return  [ ] return  np. array( bboxes) [ : ,  : - 1 ]  *  scale_factordef  bb_intersection_over_union ( boxA,  boxB) : xA =  max ( boxA[ 0 ] ,  boxB[ 0 ] ) yA =  max ( boxA[ 1 ] ,  boxB[ 1 ] ) xB =  min ( boxA[ 2 ] ,  boxB[ 2 ] ) yB =  min ( boxA[ 3 ] ,  boxB[ 3 ] ) interArea =  max ( 0 ,  xB -  xA +  1 )  *  max ( 0 ,  yB -  yA +  1 ) boxAArea =  ( boxA[ 2 ]  -  boxA[ 0 ]  +  1 )  *  ( boxA[ 3 ]  -  boxA[ 1 ]  +  1 ) boxBArea =  ( boxB[ 2 ]  -  boxB[ 0 ]  +  1 )  *  ( boxB[ 3 ]  -  boxB[ 1 ]  +  1 ) iou =  interArea /  float ( boxAArea +  boxBArea -  interArea) return  ioudef  join ( tube_bbox,  bbox) : xA =  min ( tube_bbox[ 0 ] ,  bbox[ 0 ] ) yA =  min ( tube_bbox[ 1 ] ,  bbox[ 1 ] ) xB =  max ( tube_bbox[ 2 ] ,  bbox[ 2 ] ) yB =  max ( tube_bbox[ 3 ] ,  bbox[ 3 ] ) return  ( xA,  yA,  xB,  yB) def  compute_bbox ( tube_bbox,  frame_shape,  inp,  image_shape,  increase_area= 0.1 ) : left,  top,  right,  bot =  tube_bboxwidth =  right -  leftheight =  bot -  topwidth_increase =  max ( increase_area,  ( ( 1  +  2  *  increase_area)  *  height -  width)  /  ( 2  *  width) ) height_increase =  max ( increase_area,  ( ( 1  +  2  *  increase_area)  *  width -  height)  /  ( 2  *  height) ) left =  int ( left -  width_increase *  width) top =  int ( top -  height_increase *  height) right =  int ( right +  width_increase *  width) bot =  int ( bot +  height_increase *  height) top,  bot,  left,  right =  max ( 0 ,  top) ,  min ( bot,  frame_shape[ 0 ] ) ,  max ( 0 ,  left) ,  min ( right,  frame_shape[ 1 ] ) h,  w =  bot -  top,  right -  leftscale =  f' { image_shape[ 0 ] } : { image_shape[ 1 ] } ' return  f'ffmpeg -i  { inp}  -filter:v "crop= { w} : { h} : { left} : { top} , scale= { scale} " crop.png' def  process_image ( args) : device =  'cpu'  if  args. cpu else  'cuda' fa =  face_alignment. FaceAlignment( face_alignment. LandmarksType. TWO_D,  flip_input= False ,  device= device) frame =  skimage. io. imread( args. inp) frame_shape =  frame. shapebboxes =  extract_bbox( frame,  fa) if  len ( bboxes)  ==  0 : print ( "No faces detected." ) return  [ ] tube_bbox =  bboxes[ 0 ]   command =  compute_bbox( tube_bbox,  frame_shape,  inp= args. inp,  image_shape= args. image_shape,  increase_area= args. increase) return  [ command] if  __name__ ==  "__main__" : parser =  ArgumentParser( ) parser. add_argument( "--image_shape" ,  default= ( 256 ,  256 ) ,  type = lambda  x:  tuple ( map ( int ,  x. split( ',' ) ) ) , help = "Image shape" ) parser. add_argument( "--increase" ,  default= 0.1 ,  type = float ,  help = 'Increase bbox by this amount' ) parser. add_argument( "--iou_with_initial" ,  type = float ,  default= 0.25 ,  help = "The minimal allowed iou with inital bbox" ) parser. add_argument( "--inp" ,  required= True ,  help = 'Input image' ) parser. add_argument( "--cpu" ,  dest= "cpu" ,  action= "store_true" ,  help = "cpu mode." ) args =  parser. parse_args( ) commands =  process_image( args) for  command in  commands: print ( command) 
import  face_alignment
import  skimage. io
import  numpy
from  argparse import  ArgumentParser
from  skimage import  img_as_ubyte
from  skimage. transform import  resize
from  tqdm import  tqdm
import  os
import  imageio
import  numpy as  np
import  warnings
warnings. filterwarnings( "ignore" ) 
def  extract_bbox ( frame,  fa) : if  max ( frame. shape[ 0 ] ,  frame. shape[ 1 ] )  >  640 : scale_factor =   max ( frame. shape[ 0 ] ,  frame. shape[ 1 ] )  /  640.0 frame =  resize( frame,  ( int ( frame. shape[ 0 ]  /  scale_factor) ,  int ( frame. shape[ 1 ]  /  scale_factor) ) ) frame =  img_as_ubyte( frame) else : scale_factor =  1 frame =  frame[ . . . ,  : 3 ] bboxes =  fa. face_detector. detect_from_image( frame[ . . . ,  : : - 1 ] ) if  len ( bboxes)  ==  0 : return  [ ] return  np. array( bboxes) [ : ,  : - 1 ]  *  scale_factordef  bb_intersection_over_union ( boxA,  boxB) : xA =  max ( boxA[ 0 ] ,  boxB[ 0 ] ) yA =  max ( boxA[ 1 ] ,  boxB[ 1 ] ) xB =  min ( boxA[ 2 ] ,  boxB[ 2 ] ) yB =  min ( boxA[ 3 ] ,  boxB[ 3 ] ) interArea =  max ( 0 ,  xB -  xA +  1 )  *  max ( 0 ,  yB -  yA +  1 ) boxAArea =  ( boxA[ 2 ]  -  boxA[ 0 ]  +  1 )  *  ( boxA[ 3 ]  -  boxA[ 1 ]  +  1 ) boxBArea =  ( boxB[ 2 ]  -  boxB[ 0 ]  +  1 )  *  ( boxB[ 3 ]  -  boxB[ 1 ]  +  1 ) iou =  interArea /  float ( boxAArea +  boxBArea -  interArea) return  ioudef  join ( tube_bbox,  bbox) : xA =  min ( tube_bbox[ 0 ] ,  bbox[ 0 ] ) yA =  min ( tube_bbox[ 1 ] ,  bbox[ 1 ] ) xB =  max ( tube_bbox[ 2 ] ,  bbox[ 2 ] ) yB =  max ( tube_bbox[ 3 ] ,  bbox[ 3 ] ) return  ( xA,  yA,  xB,  yB) def  compute_bbox ( start,  end,  fps,  tube_bbox,  frame_shape,  inp,  image_shape,  increase_area= 0.1 ) : left,  top,  right,  bot =  tube_bboxwidth =  right -  leftheight =  bot -  topwidth_increase =  max ( increase_area,  ( ( 1  +  2  *  increase_area)  *  height -  width)  /  ( 2  *  width) ) height_increase =  max ( increase_area,  ( ( 1  +  2  *  increase_area)  *  width -  height)  /  ( 2  *  height) ) left =  int ( left -  width_increase *  width) top =  int ( top -  height_increase *  height) right =  int ( right +  width_increase *  width) bot =  int ( bot +  height_increase *  height) top,  bot,  left,  right =  max ( 0 ,  top) ,  min ( bot,  frame_shape[ 0 ] ) ,  max ( 0 ,  left) ,  min ( right,  frame_shape[ 1 ] ) h,  w =  bot -  top,  right -  leftstart =  start /  fpsend =  end /  fpstime =  end -  startscale =  f' { image_shape[ 0 ] } : { image_shape[ 1 ] } ' return  f'ffmpeg -i  { inp}  -ss  { start}  -t  { time}  -filter:v "crop= { w} : { h} : { left} : { top} , scale= { scale} " crop.mp4' def  compute_bbox_trajectories ( trajectories,  fps,  frame_shape,  args) : commands =  [ ] for  i,  ( bbox,  tube_bbox,  start,  end)  in  enumerate ( trajectories) : if  ( end -  start)  >  args. min_frames: command =  compute_bbox( start,  end,  fps,  tube_bbox,  frame_shape,  inp= args. inp,  image_shape= args. image_shape,  increase_area= args. increase) commands. append( command) return  commandsdef  process_video ( args) : device =  'cpu'  if  args. cpu else  'cuda' fa =  face_alignment. FaceAlignment( face_alignment. LandmarksType. TWO_D,  flip_input= False ,  device= device) video =  imageio. get_reader( args. inp) trajectories =  [ ] previous_frame =  None fps =  video. get_meta_data( ) [ 'fps' ] commands =  [ ] try : for  i,  frame in  tqdm( enumerate ( video) ) : frame_shape =  frame. shapebboxes =   extract_bbox( frame,  fa) not_valid_trajectories =  [ ] valid_trajectories =  [ ] for  trajectory in  trajectories: tube_bbox =  trajectory[ 0 ] intersection =  0 for  bbox in  bboxes: intersection =  max ( intersection,  bb_intersection_over_union( tube_bbox,  bbox) ) if  intersection >  args. iou_with_initial: valid_trajectories. append( trajectory) else : not_valid_trajectories. append( trajectory) commands +=  compute_bbox_trajectories( not_valid_trajectories,  fps,  frame_shape,  args) trajectories =  valid_trajectoriesfor  bbox in  bboxes: intersection =  0 current_trajectory =  None for  trajectory in  trajectories: tube_bbox =  trajectory[ 0 ] current_intersection =  bb_intersection_over_union( tube_bbox,  bbox) if  intersection <  current_intersection and  current_intersection >  args. iou_with_initial: intersection =  bb_intersection_over_union( tube_bbox,  bbox) current_trajectory =  trajectoryif  current_trajectory is  None : trajectories. append( [ bbox,  bbox,  i,  i] ) else : current_trajectory[ 3 ]  =  icurrent_trajectory[ 1 ]  =  join( current_trajectory[ 1 ] ,  bbox) except  IndexError as  e: raise  ( e) commands +=  compute_bbox_trajectories( trajectories,  fps,  frame_shape,  args) return  commandsif  __name__ ==  "__main__" : parser =  ArgumentParser( ) parser. add_argument( "--image_shape" ,  default= ( 256 ,  256 ) ,  type = lambda  x:  tuple ( map ( int ,  x. split( ',' ) ) ) , help = "Image shape" ) parser. add_argument( "--increase" ,  default= 0.1 ,  type = float ,  help = 'Increase bbox by this amount' ) parser. add_argument( "--iou_with_initial" ,  type = float ,  default= 0.25 ,  help = "The minimal allowed iou with inital bbox" ) parser. add_argument( "--inp" ,  required= True ,  help = 'Input image or video' ) parser. add_argument( "--min_frames" ,  type = int ,  default= 150 ,   help = 'Minimum number of frames' ) parser. add_argument( "--cpu" ,  dest= "cpu" ,  action= "store_true" ,  help = "cpu mode." ) args =  parser. parse_args( ) commands =  process_video( args) for  command in  commands: print  ( command)