【Linux】进程优先级 | 进程调度(三)

目录

前言:

一、进程优先级:

1.通过nice值修改优先级: 

二、进程切换:

三、上下文数据

四、Linux真实调度算法:

五、bitmap位图:

六、命令总结:

总结:


前言:

我们已经知道了进程的一些属性,和进程的各种状态及孤儿进程,那么接下来我们就需要知道进程的调度方法和优先级,少年,开始吧!

一、进程优先级:

进程优先级也就是获取某种资源的先后顺序。为什么存在?本质就是目标资源较少。

在task_struct中的优先级属性是使用几个int类型的变量表示的。优先级数字越小,优先级越高,也就和我们的排名一样。

为了方便观察,我们依旧写一个死循环的程序:

当我们想查看一个进程的优先级信息,我们可以使用ps -l查看优先级信息:

如果你是新开的Xshell窗口,需要加上-a选项来查看全局的进程。

1.通过nice值修改优先级: 

我们一般是通过修改nice值对优先级进行修改的:

插一嘴:UID是什么?

我们平时文件的拥有者,所属组都是一个字符串,系统做对比的时候所需时间就很多,所以OS会对每一个用户维护一个叫做UID的东西。也就是用户ID(USER identify)。我们可以使用ls -ln来查看。-n选项是把能显示成数字的就显示成数字,尤其是用户。

所以操作系统使用UID来区分进程是谁启动的,所有操作都是进程操作,进程会记录谁启动的我;而文件会记录下拥有者,所属组和对应权限。所以进程去启动相关文件时,就会进行UID的对比,从而实现权限控制。

进程的优先级是为了竞争CPU资源做准备的。 接下来我们修改进程优先级,可以通过指令也可以通过代码修改。

注意这里把nice拉到最大100(原来1767进程PRI为80,NI为0):

之后我们再次把nice值拉到最低-100,并再次观察结果:

可以看到并没有从上次的99加上nice值(-20)得到79,而是从最开始的80加上(-20)得到60最终优先级。 

为什么nice在可控范围以内呢?因为我们使用的是分时OS,在进程调度的时候要尽量公平。

优先级的存在是为了更合理竞争相关资源。

二、进程切换:

当一个进程的时间片到了,进程就要被切换;Linux是基于时间片,进行调度轮转的。但是一个进程的时间片到了并不一定就跑完了,可在任何地方被重新调度切换。

三、上下文数据

当一个进程的时间片到了,OS要保留上下文数据;当其又被调度的时候,OS要恢复上下文数据。

进程在运行的时候,会有很多临时数据,这些数据都在寄存器中保存。CPU内部的寄存器数据,是进程执行时的瞬时状态信息。

我们需要来具体了解几个寄存器,如果各位不知道寄存器是什么,可以先临时了解,就是存放各种信息的东西可以是地址,也可以是数据,寄存器在CPU上。

其中指令指针寄存器(也称IP、PC程序计数器),它里面记录下次要执行的命令的地址;IR(Instruction Register)即指令寄存器,存放的是当前执行代码的地址。 

进程在运行的时候,会有很多临时数据,这些数据都在寄存器中保存。CPU内部的寄存器数据,是进程执行时的瞬时状态信息,只写信息我们可以当做进程的上下文数据。

学过硬件的都知道,每个进程不是都需要用到寄存器吗?IP寄存器即使这次存储了进程A的下次执行地址,但是A的时间片到了,进程B执行,IP内的内容应该是B下次执行的地址;B的时间片到了,CPU调度进程A,有是怎么找进程A的执行地址呢?

我们之前已经讲过PCB(task_struct)里面有一个属性专门保存进程的上下文数据,所以在进程A执行完以后,寄存器中的内容会存放在PCB的上下文数据中,对于B也是,所以下次再次调度A就可以根据PBC来恢复上下文,继续顺序执行代码。

我们找到第一版本的Linux内核代码,其中tast_struct中的一个结构体属性是tss(任务状态段),之后看里面的属性:

可以看到PCB中包含tss_struct(可以理解为保存上下文数据的属性) 

这里面可以看到很多熟悉的寄存器。 所以上下文保存在PCB中,也就是内存中,而不是寄存器中。

我们之前讲到过,进程是通过runqueue的task_struct*head找到第一个进程并让CPU调度,当时间片结束就放在队尾,也就是FIFO(先进先出)的方式。但是我们又讲到了优先级,所以实际上,进程调度并不是FIFO,而是尽量的公平调度。

四、Linux真实调度算法:

所以我们来讲解Linux的真实调度算法:

runqueue队列中,有两个指针维护调度的进程列表。*active活跃的进程列表,*expired过期的进程列表。

进程列表是一个指针数组,前100个是实时进程,我们无法对其改变优先级;后40个是分时进程,我们可以改变优先级。这也就解释了之前的nice值为什么只有40个。

进程真正的优先级范围为[60,99],而优先级为60对应的数组下标为100。

比如此时有一个优先级为61的进程要放入queue中,会61 - 60(startpri) + 100 = 101

如果再来一个进程优先级为61进程,则会连接在第一个进程后面:

这也就是一个哈希桶,但是其实runqueue中包含两个哈希桶,维护两个,接下来我们来具体了解。

为什么要这样设计?比如此时active哈希桶中有一个进程: 

调度一般分为三种情况:

1.运行退出
2.不退出但时间片到了
3.有新进程产生了

第一种情况进程退出程序就释放掉了,我们不做讨论。

我们首先讨论有新进程产生。此时有一个问题,如果一直有新的进程产生,并且创建的新进程优先级一直都是最高的,是不是会和之前讲的调度器要非常均衡的进行进程调度所矛盾?优先级很高,表示一定要一直优先吗?优先级很低,表示要一直等待吗?

这样的话优先级低的进程就永远不会被调度,这叫做进程饥饿问题。

所以新进程会放入expired(过期)哈希桶中,而且时间片到了的进程,也会被放入expired哈希桶中。

所以active哈希桶中,进程只会越来越少,不会增多。 因为时间片会到,进程会退出。

当active为空时,OS会将active和expired指针指向的内容交换(swap(&active, &expired)),之后使用相同的调度算法,轮转执行。

注意:实时进程(0-99)不收调度影响

回到之前queue定义中的nr_active是代表对应当前哈希桶中有多少进程, 它决定要不要交换,当nr_active为0就需要交换。

五、bitmap位图:

而其中的bitmap[5],注意这是一个整形。5个整形也就有5*32=160个bit位,刚好覆盖140。因为实际上还是从上到下进行遍历看桶是否为空,这样还是很慢的。而bitmap就可以快速定位,一次查找32个bit位看是否为空。这是位图的概念。

类似这样:

for(int i = 0; i < 5; ++i) 
{if (bitmap[i] == 0) {continue;}else {//确定在32个比特位那个位置有进程}
}

这就是Linux的进程O(1)算法, 所有的进程都要有链表连接,而且进程可以在调度队列中,阻塞队列中。

Linux中的链式结构为双链表结构。但是它并不是我们想象的那样将数据和指针都放在一个节点中;其实内核中只有链接字段,没有属性字段。

所以一个进程既可以在全局链表中,也可以在任何一个其他数据结构中,只要加上节点字段即可。 

我们进程其实只知道task_struct中的link字段地址,那么它是如何找到结构体的起始地址呢?这其实就是结构体部分的内容。

struct S
{char c1;int a;char c2;
};#define OFFSETOF(struct_name,member_name) (int)&(((struct_name*)0)->member_name)int main()
{struct S s = { 'a', 10, 'b' };//printf("%d\n", OFFSETOF(struct S, c1));//printf("%d\n", OFFSETOF(struct S, a));//printf("%d\n", OFFSETOF(struct S, c2));printf("%p\n", &s);printf("%p\n", (struct S*)( (char*) & s.a - OFFSETOF(struct S, a)));//这是作者自己实现的OFFSETOF宏,各位可以直接使用offsetof宏来求偏移量//使用offsetof要引用stddef.h同文件printf("%p\n", (struct S*)((char*)&s.a - offsetof(struct S, a)));return 0;
}

这里为什么要转换为char*?这样可以按照字节为单位去操作,更好的计算。各位可以试试其他类型,会发现结果并不符合预期。

六、命令总结:

ps -l:查看当前系统中进程状态,将能显示为数字的都显示为数字。

总结:

大佬不愧为大佬,这个调度算法和位图的设计简直无敌,接下来我们就会讲解命令行参数和环境变量,这部分知识也更为炸裂,各位敬请期待!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/896388.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【redis】数据类型之hyperloglog

Redis的HyperLogLog&#xff08;HLL&#xff09;是一种高效的概率数据结构&#xff0c;也是一种基于字符串的数据结构&#xff0c;用于估计大数据集的唯一元素数量&#xff08;基数统计&#xff09;。它通过极低的内存占用&#xff08;约 12KB&#xff09;实现接近线性的时间复…

【C语言】第八期——指针、二维数组与字符串

目录 1 初始指针 2 获取变量的地址 3 定义指针变量、取地址、取值 3.1 定义指针变量 3.2 取地址、取值 4 对指针变量进行读写操作 5 指针变量作为函数参数 6 数组与指针 6.1 指针元素指向数组 6.2 指针加减运算&#xff08;了解&#xff09; 6.2.1 指针加减具体数字…

SpringBoot——生成Excel文件

在Springboot以及其他的一些项目中&#xff0c;或许我们可能需要将数据查询出来进行生成Excel文件进行数据的展示&#xff0c;或者用于进行邮箱发送进行附件添加 依赖引入 此处demo使用maven依赖进行使用 <dependency><groupId>org.apache.poi</groupId>&…

mac 下 java 调用 gurobi 不能加载 jar

在 mac 电脑中的 java 始终不能加载 gurobi 的 jar 包&#xff0c;java 的开发软件 eclipse&#xff0c;idea 总是显示找不到 gurobi 的 jar 包&#xff0c;但是 jar 包明明就在那里。 摸索了三个小时&#xff0c;最后发现原因竟然是&#xff1a; jar 包太新&#xff0c;替换…

服务端配置TCP探活,超出探活时间后的行为?

server端启动 &#xff08;完整源码在最后&#xff09; 配置探活 setsockopt(client_fd, IPPROTO_TCP, TCP_KEEPIDLE, &(int){5}, sizeof(int)); // 空闲60秒后探测setsockopt(client_fd, IPPROTO_TCP, TCP_KEEPINTVL, &(int){10}, sizeof(int)); // 探测间隔10秒…

LLC谐振变换器恒压恒流双竞争闭环simulink仿真

1.模型简介 本仿真模型基于MATLAB/Simulink&#xff08;版本MATLAB 2017Ra&#xff09;软件。建议采用matlab2017 Ra及以上版本打开。&#xff08;若需要其他版本可联系代为转换&#xff09;针对全桥LLC拓扑&#xff0c;利用Matlab软件搭建模型&#xff0c;分别对轻载&#xf…

MySQL 中如何查看 SQL 的执行计划?

SQL 语句前面使用 EXPLAIN 关键字&#xff1a; EXPLAIN SELECT * FROM users WHERE id 1; 字段 含义 id 查询的序号&#xff08;如果是子查询或联合查询&#xff0c;会有多个 id&#xff09;。 select_type 查询的类型&#xff08;简单查询、子查询、联合查询等&#xff…

Discourse 中集成 Claude 3.7 Sonnet 模型

如果 Discourse 实例已经接入了 Anthropic。 那么只需要在后台挑一个不希望继续使用的模型改下就好。 否则需要重新在 Discourse 实例中配置 AI&#xff0c;然后获得 Anthropic 的 key。 进入后台的 AI 然后选择 LLMs 虽然我们这里已经显示成 3.7 了&#xff0c;但实际上所有…

Oracle 12c Docker安装问题排查 sga_target 1536M is too small

一、问题描述 在虚拟机环境&#xff08;4核16GB内存&#xff09;上部署 truevoly/oracle-12c 容器镜像时&#xff0c;一切运行正常。然而&#xff0c;当在一台 128 核 CPU 和 512GB 内存的物理服务器上运行时&#xff0c;容器启动时出现了 ORA-00821 等错误&#xff0c;提示 S…

DeepSeek 提示词:高效的提示词设计

&#x1f9d1; 博主简介&#xff1a;CSDN博客专家&#xff0c;历代文学网&#xff08;PC端可以访问&#xff1a;https://literature.sinhy.com/#/?__c1000&#xff0c;移动端可微信小程序搜索“历代文学”&#xff09;总架构师&#xff0c;15年工作经验&#xff0c;精通Java编…

KIMI K1.5:大规模强化学习在大语言模型中的应用与工程实践

目录 1、核心技术创新:长上下文强化学习 2、策略优化的技术细节 2.1、在线镜像下降变体 2.2、长度惩罚机制 2.3、智能采样策略 3、工程架构创新 3.1、混合部署框架 3.2、代码沙箱与奖励模型 3.3、分布式系统架构 4、实验成果与性能提升 5、结论与未来展望 大语言模…

从 0 到 1:使用 Docker 部署个人博客系统

引言 在当今数字化时代&#xff0c;拥有一个个人博客来记录自己的学习、生活和见解是一件非常有意义的事情。然而&#xff0c;传统的博客部署方式往往涉及复杂的环境配置和依赖管理&#xff0c;容易让人望而却步。而 Docker 的出现&#xff0c;为我们提供了一种简单、高效的解…

多进程网络服务端详细说明文档

多进程网络服务端详细说明文档 一、概述 本项目实现了一个基于多进程的 TCP 网络服务端&#xff0c;主要用于处理多个客户端的连接请求。为了提高代码的可维护性和可复用性&#xff0c;分成了头文件&#xff08;.h&#xff09;和多个源文件&#xff08;.cpp&#xff09;。具体…

HDFS数据多目录、异构存储、回收站

1.NameNode元数据多目录 HDFS集群中可以在hdfs-site.xml中配置“dfs.namenode.name.dir”属性来指定NameNode存储数据的目录&#xff0c;默认NameNode数据存储在${hadoop.tmp.dir}/dfs/name目录&#xff0c;“hadoop.tmp.dir”配置项在core-site.xml中。 我们也可以将NameNod…

TFChat:腾讯大模型知识引擎(DeepSeek R1)+飞书机器人实现AI智能助手

效果 TFChat项目地址 https://github.com/fish2018/TFChat 腾讯大模型知识引擎用的是DeepSeek R1&#xff0c;项目为sanic和redis实现&#xff0c;利用httpx异步处理流式响应&#xff0c;同时使用buffer来避免频繁调用飞书接口更新卡片的网络耗时。为了进一步减少网络IO消耗&…

HTML5 面试题

1. HTML5 新增了哪些重要特性&#xff1f; 语义化标签&#xff1a;这些标签有助于提高页面的可读性和可维护性。多媒体支持&#xff1a;HTML5 引入了 和 标签&#xff0c;可以直接嵌入音频和视频文件&#xff0c;无需依赖插件。本地存储&#xff1a;引入了 localStorage 和 se…

【Linux】Linux常用命令

目录 文件和目录相关命令查看和管理进程磁盘和文件系统管理用户和权限管理网络相关命令文本处理命令系统状态查看命令软件包管理命令计划任务和后台作业其他常用命令 1. 文件和目录相关命令 命令作用示例pwd显示当前工作目录pwdls列出目录内容ls -l 查看详细信息cd切换目录cd…

布署elfk-准备工作

建议申请5台机器部署elfk&#xff1a; filebeat(每台app)--> logstash(2台keepalived)--> elasticsearch(3台)--> kibana(部署es上)采集输出 处理转发 分布式存储 展示 ELK中文社区: 搜索客&#xff0c;搜索人自己的社区 官方…

DeepSeek:我的AI助手之旅

★【前言】: 初次使用AI助手帮我写作,就像摸石头过河一样,一点点的前行。我在慢慢的摸索,慢慢的体会中,感悟出的一点个人心得体会现分享给大家。这也说明一个问题,网站上各种使用方法和技巧是对于已经使用过的人来说的方便和快捷,但对于刚刚接触的使用者来说,网上的各…