竞赛 交通目标检测-行人车辆检测流量计数 - 竞赛

文章目录

  • 0 前言
  • 1\. 目标检测概况
    • 1.1 什么是目标检测?
    • 1.2 发展阶段
  • 2\. 行人检测
    • 2.1 行人检测简介
    • 2.2 行人检测技术难点
    • 2.3 行人检测实现效果
    • 2.4 关键代码-训练过程
  • 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 毕业设计 交通目标检测-行人车辆检测流量计数

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1. 目标检测概况

1.1 什么是目标检测?

目标检测,粗略来说就是:输入图片/视频,经过处理,得到:目标的位置信息(比如左上角和右下角的坐标)、目标的预测类别、目标的预测置信度(confidence)。

1.2 发展阶段

  1. 手工特征提取算法,如VJ、HOG、DPM

  2. R-CNN算法(2014),最早的基于深度学习的目标检测器之一,其结构是两级网络:

  • 1)首先需要诸如选择性搜索之类的算法来提出可能包含对象的候选边界框;
  • 2)然后将这些区域传递到CNN算法进行分类;
  1. R-CNN算法存在的问题是其仿真很慢,并且不是完整的端到端的目标检测器。

  2. Fast R-CNN算法(2014末),对原始R-CNN进行了相当大的改进:提高准确度,并减少执行正向传递所花费的时间。
    是,该模型仍然依赖于外部区域搜索算法。

  3. faster R-CNN算法(2015),真正的端到端深度学习目标检测器。删除了选择性搜索的要求,而是依赖于

  • (1)完全卷积的区域提议网络(RPN, Region Purpose Network),可以预测对象边界框和“对象”分数(量化它是一个区域的可能性的分数)。
  • (2)然后将RPN的输出传递到R-CNN组件以进行最终分类和标记。
  1. R-CNN系列算法,都采取了two-stage策略。特点是:虽然检测结果一般都非常准确,但仿真速度非常慢,即使是在GPU上也仅获得5 FPS。

  2. one-stage方法有:yolo(2015)、SSD(2015末),以及在这两个算法基础上改进的各论文提出的算法。这些算法的基本思路是:均匀地在图片的不同位置进行密集抽样,抽样时可以采用不同尺度和长宽比,然后利用CNN提取特征后直接进行分类与回归。
    整个过程只需要一步,所以其优势是速度快,但是训练比较困难。

  3. yolov3(2018)是yolo作者提出的第三个版本(之前还提过yolov2和它们的tinny版本,tinny版本经过压缩更快但是也降低了准确率)。

2. 行人检测

这里学长以行人检测作为例子来讲解目标检测。

2.1 行人检测简介

行人检测( Pedestrian
Detection)一直是计算机视觉研究中的热点和难点。行人检测要解决的问题是:找出图像或视频帧中所有的行人,包括位置和大小,一般用矩形框表示,和人脸检测类似,这也是典型的目标检测问题。

行人检测技术有很强的使用价值,它可以与行人跟踪,行人重识别等技术结合,应用于汽车无人驾驶系统(ADAS),智能机器人,智能视频监控,人体行为分析,客流统计系统,智能交通等领域。

2.2 行人检测技术难点

由于人体具有相当的柔性,因此会有各种姿态和形状,其外观受穿着,姿态,视角等影响非常大,另外还面临着遮挡
、光照等因素的影响,这使得行人检测成为计算机视觉领域中一个极具挑战性的课题。行人检测要解决的主要难题是:

  • 外观差异大:包括视角,姿态,服饰和附着物,光照,成像距离等。从不同的角度看过去,行人的外观是很不一样的。处于不同姿态的行人,外观差异也很大。由于人穿的衣服不同,以及打伞、戴帽子、戴围巾、提行李等附着物的影响,外观差异也非常大。光照的差异也导致了一些困难。远距离的人体和近距离的人体,在外观上差别也非常大。

  • 遮挡问题: 在很多应用场景中,行人非常密集,存在严重的遮挡,我们只能看到人体的一部分,这对检测算法带来了严重的挑战。

  • 背景复杂:无论是室内还是室外,行人检测一般面临的背景都非常复杂,有些物体的外观和形状、颜色、纹理很像人体,导致算法无法准确的区分。

  • 检测速度:行人检测一般采用了复杂的模型,运算量相当大,要达到实时非常困难,一般需要大量的优化。

2.3 行人检测实现效果

在这里插入图片描述

检测到行人后还可以做流量分析:

在这里插入图片描述

2.4 关键代码-训练过程

import cv2import numpy as npimport randomdef load_images(dirname, amout = 9999):img_list = []file = open(dirname)img_name = file.readline()while img_name != '':  # 文件尾img_name = dirname.rsplit(r'/', 1)[0] + r'/' + img_name.split('/', 1)[1].strip('\n')img_list.append(cv2.imread(img_name))img_name = file.readline()amout -= 1if amout <= 0: # 控制读取图片的数量breakreturn img_list# 从每一张没有人的原始图片中随机裁出10张64*128的图片作为负样本def sample_neg(full_neg_lst, neg_list, size):random.seed(1)width, height = size[1], size[0]for i in range(len(full_neg_lst)):for j in range(10):y = int(random.random() * (len(full_neg_lst[i]) - height))x = int(random.random() * (len(full_neg_lst[i][0]) - width))neg_list.append(full_neg_lst[i][y:y + height, x:x + width])return neg_list# wsize: 处理图片大小,通常64*128; 输入图片尺寸>= wsizedef computeHOGs(img_lst, gradient_lst, wsize=(128, 64)):hog = cv2.HOGDescriptor()# hog.winSize = wsizefor i in range(len(img_lst)):if img_lst[i].shape[1] >= wsize[1] and img_lst[i].shape[0] >= wsize[0]:roi = img_lst[i][(img_lst[i].shape[0] - wsize[0]) // 2: (img_lst[i].shape[0] - wsize[0]) // 2 + wsize[0], \(img_lst[i].shape[1] - wsize[1]) // 2: (img_lst[i].shape[1] - wsize[1]) // 2 + wsize[1]]gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)gradient_lst.append(hog.compute(gray))# return gradient_lstdef get_svm_detector(svm):sv = svm.getSupportVectors()rho, _, _ = svm.getDecisionFunction(0)sv = np.transpose(sv)return np.append(sv, [[-rho]], 0)# 主程序# 第一步:计算HOG特征neg_list = []pos_list = []gradient_lst = []labels = []hard_neg_list = []svm = cv2.ml.SVM_create()pos_list = load_images(r'G:/python_project/INRIAPerson/96X160H96/Train/pos.lst')full_neg_lst = load_images(r'G:/python_project/INRIAPerson/train_64x128_H96/neg.lst')sample_neg(full_neg_lst, neg_list, [128, 64])print(len(neg_list))computeHOGs(pos_list, gradient_lst)[labels.append(+1) for _ in range(len(pos_list))]computeHOGs(neg_list, gradient_lst)[labels.append(-1) for _ in range(len(neg_list))]# 第二步:训练SVMsvm.setCoef0(0)svm.setCoef0(0.0)svm.setDegree(3)criteria = (cv2.TERM_CRITERIA_MAX_ITER + cv2.TERM_CRITERIA_EPS, 1000, 1e-3)svm.setTermCriteria(criteria)svm.setGamma(0)svm.setKernel(cv2.ml.SVM_LINEAR)svm.setNu(0.5)svm.setP(0.1)  # for EPSILON_SVR, epsilon in loss function?svm.setC(0.01)  # From paper, soft classifiersvm.setType(cv2.ml.SVM_EPS_SVR)  # C_SVC # EPSILON_SVR # may be also NU_SVR # do regression tasksvm.train(np.array(gradient_lst), cv2.ml.ROW_SAMPLE, np.array(labels))# 第三步:加入识别错误的样本,进行第二轮训练# 参考 http://masikkk.com/article/SVM-HOG-HardExample/hog = cv2.HOGDescriptor()hard_neg_list.clear()hog.setSVMDetector(get_svm_detector(svm))for i in range(len(full_neg_lst)):rects, wei = hog.detectMultiScale(full_neg_lst[i], winStride=(4, 4),padding=(8, 8), scale=1.05)for (x,y,w,h) in rects:hardExample = full_neg_lst[i][y:y+h, x:x+w]hard_neg_list.append(cv2.resize(hardExample,(64,128)))computeHOGs(hard_neg_list, gradient_lst)[labels.append(-1) for _ in range(len(hard_neg_list))]svm.train(np.array(gradient_lst), cv2.ml.ROW_SAMPLE, np.array(labels))# 第四步:保存训练结果hog.setSVMDetector(get_svm_detector(svm))hog.save('myHogDector.bin')

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/796615.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python3 Ubuntu

一、安装中文输入法 1.sudo apt install ibus-sunpinyin 2.点击右上角输入法&#xff0c;然后点击加号&#xff0c;输入yin添加进来&#xff0c;最后选中输入法即可 二、安装截屏软件 1.sudo apt install gnome-screenshot 三、安装opencv-python 1.pip3 install --upgrade…

HTTP协议报文的结构的补充和from表单以及ajax表单

响应 状态码 表示了这次请求对应的响应,是什么样的状态(成功,失败,还是其他的情况.还有及其对应的原因&#xff09; 主要有这些类 成功状态码&#xff1a;其中200最常见&#xff0c;表示成功 重定向状态码&#xff1a;很多时候,页面跳转,就可以通过重定向来实现. 还有的时…

算法思想1. 分治法2. 动态规划法3. 贪心算法4. 回溯法

目录 递归和动态的区别:空间和时间复杂度之争 递归空间复杂度低;动态时间复杂度第低

智慧牧场数据 7

1 体征数据采集 需求:获取奶牛记步信息 三轴加速度测量&#xff1a;加速度测量计反应的加速向量与当前的受力方向是相反&#xff0c;单位为g 陀螺仪&#xff0c;是用来测量角速度的&#xff0c;单位为度每秒&#xff08;deg/s&#xff09; 2000deg/s 相当于1秒钟多少转 1.1…

小米汽车su7全色系展示源码

源码简介 小米汽车全色系展示源码&#xff0c;小米汽车su7全色系展示源码 安装教程 纯HTML&#xff0c;直接将压缩包上传网站目录解压即可 首页截图 源码下载 小米汽车su7全色系展示源码-小8源码屋源码简介 小米汽车全色系展示源码&#xff0c;小米汽车su7全色系展示源码 …

如何不编程用 ChatGPT 爬取网站数据?

敢于大胆设想&#xff0c;才能在 AI 时代提出好问题。 需求 很多小伙伴&#xff0c;都需要为研究获取数据。从网上爬取数据&#xff0c;是其中关键一环。以往&#xff0c;这都需要编程来实现。 可最近&#xff0c;一位星友在知识星球提问&#xff1a; 这里涉及到一些个人隐私&a…

ORACLE 12 C估算 用户历史上的CPU消耗

在使用ASH不能满足&#xff0c;需要从AWR&#xff0c;即HIST系列表估算每个用户的cpu消耗&#xff0c;只能进行大概估算 先计算各用户使用的cpu time计算出各用户占比将用户cpu time 与osstat的cpu 使用率相乘 with cpu_usage as (select snap_id,BUSY_TIME/(IDLE_TIMEBUSY…

Python 100万条数据到MySQL数据库逐步写出到多个Excel

Python插入100万条数据到MySQL数据库 步骤一:导入所需模块和库 首先,我们需要导入 MySQL 连接器模块和 Faker 模块。MySQL 连接器模块用于连接到 MySQL 数据库,而 Faker 模块用于生成虚假数据。 import mysql.connector # 导入 MySQL 连接器模块 from faker import Fake…

《机器学习在量化投资中的应用研究》目录

机器学习在量化投资中的应用研究 获取链接&#xff1a;机器学习在量化投资中的应用研究_汤凌冰著_北京&#xff1a;电子工业出版社 更多技术书籍&#xff1a;技术书籍分享&#xff0c;前端、后端、大数据、AI、人工智能... 内容简介 《机器学习在量化投资中的应用研究…

2024年150道高频Java面试题(十九)

37. HashSet 和 TreeSet 的区别是什么&#xff1f; HashSet 和 TreeSet 都是 Java 中 Set 接口的实现&#xff0c;用于存储不包含重复元素的集合。它们之间的主要区别在于性能、元素排序和使用的场景。 排序&#xff1a; HashSet&#xff1a;不保证元素的顺序。它使用哈希表来…

什么是MariaDB

2024年4月6日&#xff0c;周六晚上 今晚在Debian12上安装mysql时&#xff0c;运行后却发现是MariaDB MariaDB是一个开源的关系型数据库管理系统&#xff08;RDBMS&#xff09;&#xff0c;它是MySQL的一个分支和替代品。MariaDB由MySQL的原始开发者之一Michael "Monty&qu…

Redission--布隆过滤器解决缓存穿透问题

布隆过滤器在缓存穿透问题中的使用 布隆过滤器的核心是一个位数组 布隆过滤器的误判 使用Redission的布隆过滤器步骤 添加 Redission 依赖&#xff1a;首先需要将 Redission 添加到你的 Java 项目中&#xff0c;你可以通过 Maven 来添加 Redission 的依赖。 创建 Redissio…

【Java SE】7.3类和对象

目录 1.封装 1.1封装的概念 1.2访问限定符 1.3封装扩展之包 1.3.1包的概念 1.3.2导入包中的类 1.3.3自定义包 1.3.4包的访问权限控制举例。 1.3.5常见的包 2.static成员 2.1再谈学生类 2.2static修饰成员变量 2.3static修饰成员方法 2.4static成员变量初始化 3.代…

深度学习相关知识

一.环境配置 1.cuda/cudnn安装&#xff1a; 安装cuda之前首先安装vs&#xff0c;vs版本从低到高安装。 a) 安装cuda&#xff1a;首先查看显卡支持的最高CUDA的版本&#xff0c;以便下载对应的CUDA安装包&#xff1b; cmd命令行&#xff1a;nvidia-smi,显示如下&#xff1a;…

【单片机】CJSH22-CH2O,甲醛传感器,甲醛传感器数据读取处理

原理图 解析程序 逻辑是&#xff1a; 1、初始化串口和定时器10ms中断 2、循环读取一帧数据到rev_CH2O_bufferdata 3、在主函数解析数据rev_CH2O_bufferdata 4、最终的pm2.5数值就是CH2O_value 使用CH2O_value的数据即可。 PPB单位&#xff0c;除以1000就是ppm&#xff0c;再…

ASP.NET Core 模型绑定

&#x1f340;介绍 在C#中&#xff0c;特别是在ASP.NET Core中&#xff0c;模型绑定是一个将HTTP请求中的数据映射到C#对象的过程。它使得开发者能够方便地从请求中提取数据&#xff0c;而无需手动解析请求体、查询字符串、路由数据等。ASP.NET Core提供了多种特性&#xff08…

C语言 | Leetcode C语言题解之第13题罗马数字转整数

题解&#xff1a; 题解&#xff1a; int romanToInt(char* s) {int symbolValues[26];symbolValues[I - A] 1;symbolValues[V - A] 5;symbolValues[X - A] 10;symbolValues[L - A] 50;symbolValues[C - A] 100;symbolValues[D - A] 500;symbolValues[M - A] 1000;int a…

春招百题--堆

一、堆的定义 二、堆&#xff08;优先队列&#xff09; 堆通常用于实现优先队列&#xff08;priority_queue&#xff09;&#xff0c;大顶堆相当于元素按从大到小的顺序出队的优先队列。从使用角度来看&#xff0c;我们可以将“优先队列”和“堆”看作等价的数据结构。 堆的…

【算法-数组】二分查找法

这里写自定义目录标题 一、二分查找法是什么?二、二分查找法易错点三、如何解决上述提到的问题四、左闭右闭写法五、左闭右开写法 一、二分查找法是什么? 给定一个 n 个元素有序的&#xff08;升序&#xff09;整型数组 nums 和一个目标值 target&#xff0c;返回target在数…

迷茫下是自我提升

长夜漫漫&#xff0c;无心睡眠。心中所想&#xff0c;心中所感&#xff0c;忧愁当前&#xff0c;就执笔而下&#xff0c;写下这篇文章。 回忆过往 回想当初为啥学前端&#xff0c;走前端这条路&#xff0c;学校要求嘛&#xff0c;兴趣爱好嘛&#xff0c;还是为了钱。 时间带着…