LLM之RAG实战(三十五)| 使用LangChain的3种query扩展来优化RAG

         RAG有时无法从矢量数据库中检索到正确的文档。比如我们问如下问题:

从1980年到1990年,国际象棋的规则是什么?

       RAG在矢量数据库中进行相似性搜索,来查询与国际象棋规则问题相关的相关文档。然而,在某些情况下,我们的向量数据库没有存储完整的信息,例如,我们的矢量数据库没有存储不同年份的规则。这样,数据库可以返回与国际象棋规则相关但与特定问题不直接相关的文档。

       针对上述情况,我们可以采用查询扩展技术,该技术可以对用户的原始查询生成更全面、信息更丰富的搜索。这个新生成的查询将从矢量数据库中获取更多相关文档。

本文,我们将介绍三种查询扩展方法:

一、后退提示(Step Back Prompting)

       Step back prompting来自论文《Take A Step Back: Evoking Reasoning Via Abstraction In Large Language Models》[1]

       Step back prompting是谷歌deepmind开发的一种方法,它首先使用LLM创建用户查询的抽象(从用户具体查询到通用查询的转换,因此称为后退提示),然后根据生成的通用查询来生成答案。

以下是“原始查询”和“后退查询”的示例:

{    "Original_Query": "Could the members of The Police perform lawful arrests?",    "Step_Back_Query": "what can the members of The Police do?",},{    "Original_Query": "Jan Sindel’s was born in what country?",    "Step_Back_Query": "what is Jan Sindel’s personal history?",}
#---------------------Prepare VectorDB-----------------------------------# Build a sample vectorDBfrom langchain.text_splitter import RecursiveCharacterTextSplitterfrom langchain_community.document_loaders import WebBaseLoaderfrom langchain_community.vectorstores import Chromafrom langchain.embeddings import OpenAIEmbeddingsimport osos.environ["OPENAI_API_KEY"] = "Your OpenAI KEY"# Load blog postloader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/")data = loader.load()# Splittext_splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=0)splits = text_splitter.split_documents(data)# VectorDBembedding = OpenAIEmbeddings()vectordb = Chroma.from_documents(documents=splits, embedding=embedding)#-------------------Prepare Step Back Prompt Pipeline------------------------from langchain_core.output_parsers import StrOutputParserfrom langchain_core.prompts import ChatPromptTemplate, FewShotChatMessagePromptTemplatefrom langchain_core.runnables import RunnableLambdafrom langchain.chat_models import ChatOpenAIretriever = vectordb.as_retriever()llm = ChatOpenAI()# Few Shot Examplesexamples = [    {        "input": "Could the members of The Police perform lawful arrests?",        "output": "what can the members of The Police do?",    },    {        "input": "Jan Sindel’s was born in what country?",        "output": "what is Jan Sindel’s personal history?",    },]# We now transform these to example messagesexample_prompt = ChatPromptTemplate.from_messages(    [        ("human", "{input}"),        ("ai", "{output}"),    ])few_shot_prompt = FewShotChatMessagePromptTemplate(    example_prompt=example_prompt,    examples=examples,)prompt = ChatPromptTemplate.from_messages(    [        (            "system",            """You are an expert at world knowledge. Your task is to step back and paraphrase a question to a more generic step-back question, which is easier to answer. Here are a few examples:""",        ),        # Few shot examples        few_shot_prompt,        # New question        ("user", "{question}"),    ])question_gen = prompt | llm | StrOutputParser()#--------------------------QnA using Back Prompt Technique-----------------from langchain import hubdef format_docs(docs):    doc_strings = [doc.page_content for doc in docs]    return "\n\n".join(doc_strings)response_prompt = hub.pull("langchain-ai/stepback-answer")chain = (    {        # Retrieve context using the normal question        "normal_context": RunnableLambda(lambda x: x["question"]) | retriever | format_docs,        # Retrieve context using the step-back question        "step_back_context": question_gen | retriever | format_docs,        # Pass on the question        "question": lambda x: x["question"],    }    | response_prompt    | llm    | StrOutputParser())result = chain.invoke({"question": "What Task Decomposition that work in 2022?"})

       上面的代码是使用后退提示技术运行QnA的langchain脚本。需要注意的是:使用OPENAI_API_KEY并准备自己的向量数据库。

# Load blog post # You can use different loader to load different type fileloader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/")data = loader.load()# Splittext_splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=0)splits = text_splitter.split_documents(data)

我们尝试如下问题:

Original Query: What Task Decomposition that work in 2022?

后退查询结果如下:

Step Back Query: What are some examples of task decomposition in the current year?

       这两个查询将用于提取相关文档,我们将这些文档组合在一起作为上下文,并在下面的这一部分中提供给您的LLM。

{    # Retrieve context using the normal question    "normal_context": RunnableLambda(lambda x: x["question"]) | retriever | format_docs,    # Retrieve context using the step-back question    "step_back_context": question_gen | retriever | format_docs,    # Pass on the question    "question": lambda x: x["question"],}

二、Multi Query(多查询)[2]

       多查询是一种使用LLM从第一个查询生成更多查询的技术。这种技术试图回答一些用户提示没有那么具体的情况,这些生成的查询将用于在矢量数据库中查找文档。目标是细化查询,使其与主题更加相关,从而从数据库中检索更多相关的文档。

       细节可以参考:LLM之RAG实战(三十四)| 使用LangChain的三个函数来优化RAG

三、Cross Encoding Re-Ranking(交叉编码器重排序)

       交叉编码是多查询和交叉编码器重新排序的结合,因为用户能够使用LLM生成更多的问题,每个生成的查询都能够从矢量数据库中提取出几个文档。这些提取的文档必须通过交叉编码器,以获得与初始查询的相似性分数。现在我们可以对相关文档进行重新排序,并选择前5名作为LLM摘要的上下文。

       为什么我们需要选择前5个文档?在这种情况下,我们试图避免从矢量数据库中检索到不相关的文档,这种选择确保了交叉编码器专注于最相似和最有意义的文档,从而生成更准确、更简洁的摘要。

#------------------------Prepare Vector Database--------------------------# Build a sample vectorDBfrom langchain.text_splitter import RecursiveCharacterTextSplitterfrom langchain_community.document_loaders import WebBaseLoaderfrom langchain_community.vectorstores import Chromafrom langchain.embeddings import OpenAIEmbeddingsfrom langchain.chat_models import ChatOpenAIimport osos.environ["OPENAI_API_KEY"] = "Your API KEY"# Load blog postloader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/")data = loader.load()llm = ChatOpenAI()# Splittext_splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=0)splits = text_splitter.split_documents(data)# VectorDBembedding = OpenAIEmbeddings()vectordb = Chroma.from_documents(documents=splits, embedding=embedding)#--------------------Generate More Question----------------------------------#This function use to generate queries using LLMdef create_original_query(original_query):    query = original_query["question"]    qa_system_prompt = """            You are an AI language model assistant. Your task is to generate five         different versions of the given user question to retrieve relevant documents from a vector         database. By generating multiple perspectives on the user question, your goal is to help        the user overcome some of the limitations of the distance-based similarity search.         Provide these alternative questions separated by newlines."""        qa_prompt = ChatPromptTemplate.from_messages(        [            ("system", qa_system_prompt),            ("human", "{question}"),        ]    )        rag_chain = (        qa_prompt        | llm        | StrOutputParser()    )        question_string = rag_chain.invoke(        {"question": query}    )        lines_list = question_string.splitlines()    queries = []    queries = [query] + lines_list        return queries#-------------------Retrieve Document and Cross Encoding--------------------from sentence_transformers import CrossEncoderfrom langchain_core.prompts import ChatPromptTemplatefrom langchain_core.runnables import RunnableLambda, RunnablePassthroughfrom langchain_core.output_parsers import StrOutputParserimport numpy as npcross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')#Cross Encoding happens in heredef create_documents(queries):    retrieved_documents = []    for i in queries:        results = vectordb.as_retriever().get_relevant_documents(i)        docString = [doc.page_content for doc in results]        retrieved_documents.extend(docString)            unique_a = []    #If there is duplication documents for each query, make it unique    for item in retrieved_documents:        if item not in unique_a:            unique_a.append(item)        unique_documents = list(unique_a)        pairs = []    for doc in unique_documents:        pairs.append([queries[0], doc])        #Cross Encoder Scoring    scores = cross_encoder.predict(pairs)        final_queries = []    for x in range(len(scores)):        final_queries.append({"score":scores[x],"document":unique_documents[x]})        #Rerank the documents, return top 5    sorted_list = sorted(final_queries, key=lambda x: x["score"], reverse=True)    first_five_elements = sorted_list[:6]    return first_five_elements#-----------------QnA Document-----------------------------------------------qa_system_prompt = """        Assistant is a large language model trained by OpenAI. \        Use the following pieces of retrieved context to answer the question. \        If you don't know the answer, just say that you don't know. \        {context}"""qa_prompt = ChatPromptTemplate.from_messages(    [        ("system", qa_system_prompt),        ("human", "{question}"),    ])def format(docs):    doc_strings = [doc["document"] for doc in docs]    return "\n\n".join(doc_strings)chain = (    # Prepare the context using below pipeline    # Generate Queries -> Cross Encoding -> Rerank ->return context    {"context": RunnableLambda(create_original_query)| RunnableLambda(create_documents) | RunnableLambda(format), "question": RunnablePassthrough()}    | qa_prompt    | llm    | StrOutputParser())result = chain.invoke({"question":"What Task Decomposition that work in 2022?"})

       参考从上面的langchain脚本,创建2个自定义函数用于生成查询和交叉编码。

create_original_query是生成查询,基本上会返回5个生成的问题加上原始查询。

create_documents将用于检索基于6个问题的24个相关文档。这24份相关文件将被复制,因此我们需要保留唯一的文件并删除重复的文件。

scores = cross_encoder.predict(pairs)

       上述代码可以计算出文档和原始查询之间的交叉编码分数。最后,代码将尝试根据交叉编码得分对文档进行重新排序,并只保留前5个文档。

四、结论

       这3种方法真的很有帮助,特别是如果你得到的反馈是RAG没有返回正确和详细的答案,你可以使用上面的查询扩展方法来解决这些问题。

参考文献:

[1] https://arxiv.org/pdf/2310.06117.pdf

[2] https://python.langchain.com/docs/modules/data_connection/retrievers/MultiQueryRetriever

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/778273.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

平台介绍-搭建赛事运营平台(3)

上文介绍了品牌隔离的基本原理,就是通过不同的前端和微服务来实现。但是确实很多功能是类似的,所以从编程角度还是有些管理手段的。 前端部分:前端部分没有什么特别手段,就是两个独立的项目工程,分别维护。相同的部分复…

I.MX6ULL_Linux_驱动篇(55)linux 网络驱动

网络驱动是 linux 里面驱动三巨头之一, linux 下的网络功能非常强大,嵌入式 linux 中也常常用到网络功能。前面我们已经讲过了字符设备驱动和块设备驱动,本章我们就来学习一下linux 里面的网络设备驱动。 嵌入式网络简介 网络硬件接口 首先…

如何降低 BlueNRG-LPS 的开机峰值电流

1. 前言 BlueNRG 系列存在开机瞬间会出现很大的峰值电流的现象,预计有 20ma 左右。针对此现象,经常有客户询问该峰值电流会不会导致设备工作异常?会不会导致电池使用寿命缩短(考虑到一般纽扣电池能承受的峰值电流大概在 15ma 左右…

深度剖析MySQL锁:解开数据库并发控制的神秘面纱

MySQL 锁是 MySQL 数据库管理系统中为了实现并发控制和数据一致性的机制。在多用户并发访问数据库时,锁可以确保多个事务在对同一数据进行操作时不会相互干扰,以防止数据不一致的现象发生。 一、锁分类 MySQL支持多种类型的锁,主要包括…

定时器的原理和应用

#include<reg51.h> unsigned char s[]{0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F}; unsigned char count0,num0; void inittimer() {TMOD0x01;//0000 0001TH0(65536-50000)/256; //定时50ms50000us 2562^8 初值向右边移动8位TL0(65536-50000)%256;ET01;//开启定…

多源统一视频融合可视指挥调度平台VMS/smarteye系统概述

系统功能 1. 集成了视频监控典型的常用功能&#xff0c;包括录像&#xff08;本地录像、云端录像&#xff08;录像计划、下载计划-无线导出&#xff09;、远程检索回放&#xff09;、实时预览&#xff08;PTZ云台操控、轮播、多屏操控等&#xff09;、地图-轨迹回放、语音对讲…

windows 下用使用api OCI_ConnectionCreate连接oracle报错 TNS:无法解析指定的连接标识符

背景&#xff0c;两台服务器系统一样&#xff0c;oracle版本一样&#xff0c;其中一台服务器在运行程序的时候报错 TNS:无法解析指定的连接标识符 但是PL/SQL可以正常连接&#xff0c;怀疑是oracle配置文件的原因 tnsnames.ora配置文件大概作用&#xff1a;是Oracle客户端的网…

实时数仓之实时数仓架构(Hudi)

目前比较流行的实时数仓架构有两类&#xff0c;其中一类是以FlinkDoris为核心的实时数仓架构方案&#xff1b;另一类是以湖仓一体架构为核心的实时数仓架构方案。本文针对FlinkHudi湖仓一体架构进行介绍&#xff0c;这套架构的特点是可以基于一套数据完全实现Lambda架构。实时数…

基于 StarRocks 的风控实时特征探索和实践

背景 金融风控特征是在金融领域中用于评估和管理风险的关键指标。它们帮助金融机构识别潜在风险&#xff0c;降低损失&#xff0c;并采取措施规避风险。例如&#xff0c;用户最后一次授信提交时间就是一个重要的金融风控特征。 金融风控实时特征场景是一个典型的大数据实时业务…

【人工智能Ⅱ】实验4:Unet眼底血管图像分割

实验4&#xff1a;Unet眼底血管图像分割 一&#xff1a;实验目的与要求 1&#xff1a;掌握图像分割的含义。 2&#xff1a;掌握利用Unet建立训练模型。 3&#xff1a;掌握使用Unet进行眼底血管图像数据集的分割。 二&#xff1a;实验内容 1&#xff1a;用Unet网络完成眼底血…

基于SpringBoot和Vue的在线视频教育平台的设计与实现

今天要和大家聊的是一款基于SpringBoot和Vue的在线视频教育平台的设计与实现 &#xff01;&#xff01;&#xff01; 有需要的小伙伴可以通过文章末尾名片咨询我哦&#xff01;&#xff01;&#xff01; &#x1f495;&#x1f495;作者&#xff1a;李同学 &#x1f495;&…

STM32时钟简介

1、复位&#xff1a;使时钟恢复原始状态 就是将寄存器状态恢复到复位值 STM32E10xxx支持三种复位形式,分别为系统复位、上电复位和备份区域复位。 复位分类&#xff1a; 1.1系统复位 除了时钟控制器的RCC_CSR寄存器中的复位标志位和备份区域中的寄存器以外,系统 复位将复位…

Redis中的LRU算法分析

LRU算法 概述 Redis作为缓存使用时&#xff0c;一些场景下要考虑内容的空间消耗问题。Redis会删除过期键以释放空间&#xff0c;过期键的删除策略 有两种: 1.惰性删除:每次从键空间中获取键时&#xff0c;都检查取得的键是否过期&#xff0c;如果过期的话&#xff0c;就删除…

【Java面试题】Redis上篇(基础、持久化、底层数据结构)

文章目录 基础1.什么是Redis?2.Redis可以用来干什么&#xff1f;3.Redis的五种基本数据结构&#xff1f;4.Redis为什么这么快&#xff1f;5.什么是I/O多路复用&#xff1f;6.Redis6.0为什么使用了多线程&#xff1f; 持久化7.Redis的持久化方式&#xff1f;区别&#xff1f;8.…

生成式 AI 学习资源大汇总

这里汇聚了该领域的海量学习资源&#xff0c;从研究更新到面试技巧&#xff0c;从课程材料到免费课程&#xff0c;还有实用代码&#xff0c;一应俱全&#xff0c;是你工作流程中的得力助手&#xff01; 前沿研究&#xff1a;每月精心筛选的最佳生成式 AI 论文列表&#xff0c;让…

Linux shell编程学习笔记42:md5sum

0 前言 前几天在国产电脑上遇到一个问题&#xff0c;先后接到两个文件&#xff0c;如何判断这两个文件内容是否相同&#xff1f; 如果是在Windows系统&#xff0c;可以用fc命令&#xff0c;或者用我自己写的FileInfo&#xff0c;提取两个文件有MD5、SHA1、CRC32值进行比较来判…

redis-shake可视化监控

目录 一.redis-shake v4 1.镜像 2.shake.toml 3.启动redis-shake后 二.json-exporter配置 1.Dockerfile 2.config.yml 三.prometheus配置 1.prometheus.yml 2.redis-shake.json 四.grafana 一.redis-shake v4 1.镜像 ######################### Dockerfile #########…

Qt打印系统库的日志 - QLoggingCategory

Qt的动态库通过源码可以可以看到含有大量的qCInfo 和 qCDebug 等大量的日志&#xff0c; 但是我们正常运行Qt程序&#xff0c;这些动态库或插件里面的日志是不会输出到我们的控制台里面的。 所以本章主要记录怎么输出这些日志出来。 一&#xff1a; 步骤 主要使用的是Qt的 函…

Kubernetes中pod的概念

pod pod是什么&#xff1a;pod是k8s中基本的构建模块&#xff0c;一个pod可以包含多个和单个容器&#xff0c;包含多个容器时&#xff0c;这些容器总是运行在同一个工作节点上&#xff0c;因为一个pod绝不会跨多个工作节点。 了解pod&#xff1a; pod将容器绑定在一起&#xf…

【Golang入门教程】Go语言变量的初始化

文章目录 强烈推荐引言举例多个变量同时赋值总结强烈推荐专栏集锦写在最后 强烈推荐 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站:人工智能 推荐一个个人工作&#xff0c;日常中比较常…