机器学习之决策树现成的模型使用

目录

须知

DecisionTreeClassifier

sklearn.tree.plot_tree

cost_complexity_pruning_path(X_train, y_train)

CART分类树算法

基尼指数

 分类树的构建思想

对于离散的数据

对于连续值

剪枝策略

剪枝是什么

剪枝的分类

预剪枝

后剪枝

后剪枝策略体现之威斯康辛州乳腺癌数据集

剪枝策略选用

代码


须知

在代码实现之前,我们先要知道,sklearn里面的tree库中的一些关键模块

DecisionTreeClassifier

sklearn.tree.DecisionTreeClassifier它的作用是创建一个决策树分类器模型

源码:

class sklearn.tree.DecisionTreeClassifier(*, criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None, presort='deprecated', ccp_alpha=0.0)

我们只需要了解关键参数就好

criterion:这个参数是用来选择使用何种方法度量树的切分质量的,也就是一个选择算法的。

当criterion取值为“gini”时采用 基尼不纯度(Gini impurity)算法构造决策树,当criterion取值为 “entropy” 时采用信息增益( information gain)算法构造决策树,默认为“gini”

splitter:此参数决定了在每个节点上拆分策略的选择。

支持的策略是“best” 选择“最佳拆分策略”, “random” 选择“最佳随机拆分策略”,这个先不做解释,只知道我们默认是“best”就好

max_depth:树的最大深度,取值应当是int类型,如果取值为None,则将所有节点展开,直到所有的叶子都是纯净的或者直到所有叶子都包含少于min_samples_split个样本。

min_samples_split:拆分内部节点所需的最少样本数:
· 如果取值 int , 则将min_samples_split视为最小值。
· 如果为float,则min_samples_split是一个分数,而ceil(min_samples_split * n_samples)是每个拆分的最小样本数。

默认为2
min_samples_leaf:在叶节点(就是我们的树最终的类别)处所需的最小样本数。 仅在任何深度的分裂点在左分支和右分支中的每个分支上至少留有min_samples_leaf个训练样本时,才考虑。 这可能具有平滑模型的效果,尤其是在回归中。
· 如果为int,则将min_samples_leaf视为最小值
· 如果为float,则min_samples_leaf是一个分数,而ceil(min_samples_leaf * n_samples)是每个节点的最小样本数。
默认为1

ccp_alpha:用于最小化成本复杂性修剪的复杂性参数。 将选择在成本复杂度小于ccp_alpha的子树中最大的子树。 默认情况下,不执行修剪。 有关详细信息,请参见最小成本复杂性修剪。

默认为0.0

了解以上就好了,剩下的可以自行Sklearn 中文社区了解。

sklearn.tree.plot_tree

sklearn.tree.plot_tree(decision_tree, *, max_depth=None, feature_names=None, class_names=None, label='all', filled=False, impurity=True, node_ids=False, proportion=False, rotate='deprecated', rounded=False, precision=3, ax=None, fontsize=None)

 (上面图片来自于Sklearn中文社区)

我们只需要记一下常用的就好,比如

feature_names 特征名称的列表,class_names 分类名称的列表(我用列表尝试的是可以的,但是不知道数组或者元组可以不可以,大家可以尝试一下)

另外我们还需要注意:

cost_complexity_pruning_path(X_train, y_train)

他的使用方法如下:

X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)clf = DecisionTreeClassifier(random_state=0)
path = clf.cost_complexity_pruning_path(X_train, y_train)
ccp_alphas, impurities = path.ccp_alphas, path.impurities

官方的解释是:scikit-learn提供了DecisionTreeClassifier.cost_complexity_pruning_path在修剪过程中每一步返回有效的alphas和相应的总叶子不存度。随着alpha的增加,更多的树被修剪,这增加了它的叶子的总不存度。

意思是,cost_complexity_pruning_path(X_train, y_train)是DecisionTreeClassifier(random_state=0)模型里面封装的一个功能模块,我们可以通过这个模型的对象或者说实例化,来调用这个功能,他可以返回在我们这个数据集分类的树,在修剪过程中每一步有效的‘阿尔法’,(没错,alpha就是我们的‘阿尔法’,这是一个参数,用于衡量代价与复杂度之间关系)以及每一步的‘阿尔法’所对应的树的不纯度(用对应不太严谨,应该说每一步最终得到的树的不纯度)。

CART分类树算法

续博客:

决策树算法原理以及ID3、C4.5、CART算法

在上一篇博客中,我们只是提了一下cart分类树的基本算法“基尼算法”,这个算法的核心就是“基尼系数”。

基尼指数

关于基尼系数(基尼指数):

上面是计算样本的基尼指数。

 分类树的构建思想

对于离散的数据

我们一开始选择树的根节点的时候,是把基尼指数最小的特征和该特征的最优切分点给选好的。看“西瓜书”里面的样例。

有些糊但是还可以,我们不需要知道原先的数据集,我们只是看一下,找根节点的思想就好了

就是把每个特征的最小的基尼指数的特征值拉出来,然后比较他们的基尼指数找到最小的特征值,那么这个特征值所属的特征就是根节点,而该特征值就是划分点。

分好根节点之后,我们根据划分点,把是该特征值的分为一类,作为叶子节点。(在叶子节点中,哪个种类的样本多,该叶子节点就是哪一类)

其他的分为另一类 ,然后接着按照之前的步骤接着分,循环往复,最后得到的其实是一个二叉树。

对于连续值

有的时候我们的特征值是连续的数据,就比如特征“金钱数额”,它对应的特征值是一个个的数值,所以这时候就需要其他的处理方法。(截图内容来自知乎)

简而言之,就是把连续 转化为离散,然后其他的就和离散的数据的处理方法一样,最后的到一个二叉树。

剪枝策略

剪枝是什么

剪枝顾名思义就是减去树的多余的“枝叶”,在我们的决策树里体现为,把一些子节点的叶节点去掉,让子节点成为叶节点

剪枝的分类

剪枝主要分为,预剪枝,后剪枝。

后剪枝的方法很多,现在说一些我们常用的:错误率降低剪枝REP(Reduced-Error Pruning)、悲观错误剪枝PEP(Pesimistic-Error Pruning)、代价复杂度剪枝CCP(Cost Complexity Pruning)、最小错误剪枝MEP。

预剪枝

预剪枝就是在我们构建树的每个节点前,都要计算样本的准确度有没有提升,没有提升我们就不构建,换一个划分点,提升了就接着划分。 

具体原理推荐大家看一下这位网友在知乎的这篇博客:决策树总结(三)剪枝

(我们主要分析后剪枝)

预剪枝实例 思路:先用默认值,让树完整生长,再参考完全生长的决策树的信息,分析树有没有容易过拟合的表现,通过相关参数,对过分生长的节点作出限制,以新参数重新训练决策树。

的确 ,并没有体现出预剪枝的思想,但是没办法,这个方法其实我们真不常用,现成的模型中基本都是后剪枝。

后剪枝

代价复杂度剪枝CCP:同CART剪枝算法(最常用)。

错误率降低剪枝REP:划分训练集-验证集。训练集用于形成决策树;验证集用来评估修剪决策树。大致流程可描述为:对于训练集上构建的过拟合决策树,自底向上遍历所有子树进行剪枝,直到针对交叉验证数据集无法进一步降低错误率为止。

悲观错误剪枝PEP:悲观错误剪枝也是根据剪枝前后的错误率来决定是否剪枝,和REP不同的是,PEP不需要使用验证样本,并且PEP是自上而下剪枝的。

最小错误剪枝MEP:MEP 希望通过剪枝得到一棵相对于独立数据集来说具有最小期望错误率的决策树。所使用的独立数据集是用来简化对未知样本的错分样本率的估计的,并不意味真正使用了独立的剪枝集 ,实际情况是无论早期版本还是改进版本均只利用了训练集的信息。

 CCP算法:为子树Tt定义了代价和复杂度,以及一个衡量代价与复杂度之间关系的参数a。其中代价指的是在剪枝过程中因子树T_t被叶节点替代而增加的错分样本;复杂度表示剪枝后子树Tt减少的叶结点数;a则表示剪枝后树的复杂度降低程度与代价间的关系。​在树构建完成后,对树进行剪枝简化,使以下损失函数最小化:  损失函数既考虑了代价,又考虑了树的复杂度,所以叫代价复杂度剪枝法,实质就是在树的复杂度与准确性之间取得一个平衡点。 备注:在sklearn中,如果criterion设为gini,Li 则是每个叶子节点的gini系数,如果设为entropy,则是熵。

后剪枝策略体现之威斯康辛州乳腺癌数据集

剪枝策略选用

CCP算法

代码

from matplotlib import font_manager
from sklearn import datasets  # 导入数据集
from sklearn import tree
from sklearn.model_selection import \train_test_split  # 导入数据分离包 用法:X_train,X_test, y_train, y_test = train_test_split(train_data, train_target, test_size, random_state, shuffle)
import numpy
import matplotlib.pyplot as pltdata = datasets.load_breast_cancer()
#print(data)
#key=data.keys()
#print(key) #dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names', 'filename', 'data_module'])
sample=data['data']
#print(sample)
#print(sample.shape)#(569, 30) 一共569行 每行数据都有30个特征
#print(data['target'])
target=data['target']
#print(target)
# [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#  1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0
#  1 0 1 0 0 1 1 1 0 0 1 0 0 0 1 1 1 0 1 1 0 0 1 1 1 0 0 1 1 1 1 0 1 1 0 1 1
#  1 1 1 1 1 1 0 0 0 1 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 1 1 0 1
#  1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 1 1 0 1 1 0 0 0 1 0
#  1 0 1 1 1 0 1 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 1
#  1 0 1 1 1 1 1 0 0 1 1 0 1 1 0 0 1 0 1 1 1 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0
#  0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 1 1 0 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1
#  1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1
#  1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0
#  0 1 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1
#  1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 1 1 1 1 0 1 1
#  0 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1
#  1 1 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 0 1 1 0 1 0 1 0 0
#  1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#  1 1 1 1 1 1 1 0 0 0 0 0 0 1]
#print(data['target_names'])#['malignant' 'benign']三种类型分别对应:0,1#b=[0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.75]
#b = [0.05,0.06,0.07,0.08, 0.1,0.11,0.12,0.13,0.14, 0.15,0.16,0.17,0.18,0.19,0.2, 0.21, 0.22,0.25,0.27,0.29 ,0.3,0.33, 0.35,0.37, 0.4,0.45,0.5]
# b = [0.01,0.02,0.03,0.05,0.06,0.07,0.08,0.09, 0.1]
# a = []
# for x in b:
#     train_data,test_data,train_target,test_target=train_test_split(sample,target,test_size=x,random_state=2020)
#     tree_= tree.DecisionTreeClassifier()
#     tree_.fit(train_data,train_target)
#     print('模型的准确度:',tree_.score(test_data,test_target))
#     a.append(tree_.score(test_data,test_target))
# plt.plot(b,a)
# plt.show()
#测试集尺寸选择0.03比较合适
#开始创建模型
train_data, test_data, train_target, test_target = train_test_split(sample, target, test_size=0.03, random_state=2020)
tree_ = tree.DecisionTreeClassifier()
tree_.fit(train_data, train_target)
print('模型准确度:',tree_.score(test_data, test_target))
tree.plot_tree(tree_,filled=True,feature_names=data['feature_names'],class_names=data['target_names'])
plt.show()
print('在叶子节点对应的索引---------------------')
print(tree_.apply(sample))
print( '预测-----------------------')
# [1.799e+01 1.038e+01 1.228e+02 1.001e+03 1.184e-01 2.776e-01 3.001e-01
#  1.471e-01 2.419e-01 7.871e-02 1.095e+00 9.053e-01 8.589e+00 1.534e+02
#  6.399e-03 4.904e-02 5.373e-02 1.587e-02 3.003e-02 6.193e-03 2.538e+01
#  1.733e+01 1.846e+02 2.019e+03 1.622e-01 6.656e-01 7.119e-01 2.654e-01
#  4.601e-01 1.189e-01],0
b = [sample[0]]
b_target = tree_.predict(b)
print(b_target)
# # 优化:
# #优化方式一:从整个树开始处理一些枝节
print('从整个树开始处理一些枝节--------------------------------')
tree_ = tree.DecisionTreeClassifier(min_samples_leaf=15,random_state=0)
tree_.fit(train_data, train_target)
tree.plot_tree(tree_,filled=True,feature_names=data['feature_names'],class_names=data['target_names'])
plt.show()
print('模型准确度:',tree_.score(test_data, test_target))
print('在叶子节点对应的索引---------------------')
print(tree_.apply(sample))
# print( '预测-----------------------')
# [1.799e+01 1.038e+01 1.228e+02 1.001e+03 1.184e-01 2.776e-01 3.001e-01
#  1.471e-01 2.419e-01 7.871e-02 1.095e+00 9.053e-01 8.589e+00 1.534e+02
#  6.399e-03 4.904e-02 5.373e-02 1.587e-02 3.003e-02 6.193e-03 2.538e+01
#  1.733e+01 1.846e+02 2.019e+03 1.622e-01 6.656e-01 7.119e-01 2.654e-01
#  4.601e-01 1.189e-01],0
b = [sample[0]]
b_target = tree_.predict(b)
print(b_target)
# #优化方式二:后剪枝cpp
print('后剪枝cpp------------------')
tree_ = tree.DecisionTreeClassifier(min_samples_leaf=15,random_state=0)
tree_.fit(train_data, train_target)
impuritiesandalphas=tree_.cost_complexity_pruning_path(train_data,train_target)
impurities=impuritiesandalphas.impurities
alphas=impuritiesandalphas.ccp_alphas
print('impurities',impurities)
print('alphas',alphas)
print('开始后剪枝训练------------------')
# test_=[0.       ,  0.00046032 ,0.000881  , 0.00194334, 0.01499473, 0.0181062,0.04895626 ,0.32369286]
# test_=[0.       ,  0.00046032 ,0.000881  , 0.00194334, 0.01499473, 0.0181062,0.04895626]
# test_=[0.       ,  0.00046032 ,0.000881  , 0.00194334, 0.01499473, 0.0181062,0.02]
# scor_=[]
# for x in test_:
#     tree_ = tree.DecisionTreeClassifier(min_samples_leaf=5,random_state=0,ccp_alpha=x)
#     tree_.fit(train_data, train_target)
#     print('模型准确度:',tree_.score(test_data, test_target))
#     scor_.append(tree_.score(test_data, test_target))
# font = font_manager.FontProperties(fname="C:\\Users\\ASUS\\Desktop\\Fonts\\STZHONGS.TTF")
# plt.plot(test_, scor_, "r", label='模型精准度')
# plt.title('参数alpha和模型精准度的关系', fontproperties=font, fontsize=18)
# plt.legend(prop=font)
# plt.show()
#alpha=0.02
al=0.02
tree_ = tree.DecisionTreeClassifier(min_samples_leaf=15,random_state=0,ccp_alpha=al)
tree_.fit(train_data, train_target)
tree.plot_tree(tree_,filled=True,feature_names=data['feature_names'],class_names=data['target_names'])
plt.show()
print('模型准确度:',tree_.score(test_data, test_target))
print('在叶子节点对应的索引---------------------')
print(tree_.apply(sample))
print(f'alpha={al}时树的纯度:')
is_leaf =tree_.tree_.children_left ==-1
tree_impurities = (tree_.tree_.impurity[is_leaf]* tree_.tree_.n_node_samples[is_leaf]/len(train_target)).sum()
print(tree_impurities)
print( '预测-----------------------')
# [1.799e+01 1.038e+01 1.228e+02 1.001e+03 1.184e-01 2.776e-01 3.001e-01
#  1.471e-01 2.419e-01 7.871e-02 1.095e+00 9.053e-01 8.589e+00 1.534e+02
#  6.399e-03 4.904e-02 5.373e-02 1.587e-02 3.003e-02 6.193e-03 2.538e+01
#  1.733e+01 1.846e+02 2.019e+03 1.622e-01 6.656e-01 7.119e-01 2.654e-01
#  4.601e-01 1.189e-01],0
b = [sample[0]]
b_target = tree_.predict(b)
print(b_target)

总之我们要根据模型生成的树来进行剪枝判断,从而更改模型参数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/778108.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux基础篇:解析Linux命令执行的基本原理

Linux 命令是一组可在 Linux 操作系统中使用的指令,用于执行特定的任务,例如管理文件和目录、安装和配置软件、网络管理等。这些命令通常在终端或控制台中输入,并以文本形式显示输出结果。 Linux 命令通常以一个或多个单词的简短缩写或单词…

学习vue3第十二节(组件的使用与类型)

1、组件的作用用途 目的: 提高代码的复用度,和便于维护,通过封装将复杂的功能代码拆分为更小的模块,方便管理, 当我们需要实现相同的功能时,我们只需要复用已经封装好的组件,而不需要重新编写相…

(九)图像的高斯低通滤波

环境:Windows10专业版 IDEA2021.2.3 jdk11.0.1 OpenCV-460.jar 系列文章: (一)PythonGDAL实现BSQ,BIP,BIL格式的相互转换 (二)BSQ,BIL,BIP存储格式的相互转换算法 (三…

Flask学习(六):蓝图(Blueprint)

蓝图(Blueprint):将各个业务进行区分,然后每一个业务单元可以独立维护,Blueprint可以单独具有自己的模板、静态文件或者其它的通用操作方法,它并不是必须要实现应用的视图和函数的。 Demo目录结构&#xf…

linux离线安装jenkins及使用教程

本教程采用jenkins.war的方式离线安装部署,在线下载的方式会遇到诸多问题,不宜采用 一、下载地址 地址:Jenkins download and deployment 下载最新的长期支持版 由于jenkins使用java开发的,所以需要安装的linux服务器装有jdk环…

插入排序、归并排序、堆排序和快速排序的稳定性分析

插入排序、归并排序、堆排序和快速排序的稳定性分析 一、插入排序的稳定性二、归并排序的稳定性三、堆排序的稳定性四、快速排序的稳定性总结在计算机科学中,排序是将一组数据按照特定顺序进行排列的过程。排序算法的效率和稳定性是评价其优劣的两个重要指标。稳定性指的是在排…

新版Idea2023.3.5与lombok冲突、@Data失效

新版idea和lombok冲突,加上Data,其他地方get set也不报错,但是一运行就找不到get set方法。 但是直接使用Getter和Setter可以访问、应该是Data失效了。 解决方法: 看推上介绍是 lombok 与 idea 采集 get 、set 方法的时候所用的技…

Jupyter开启远程服务器(最新版)

Jupyter Notebook 在本地进行访问时比较简单,直接在cmd命令行下输入 jupyter notebook 即可,然而notebook的作用不止于此,还可以用于远程连接服务器,这样如果你有一台服务器内存很大,但是呢你又不喜欢在linux上进行操作…

【C语言】编译和链接----预处理详解【图文详解】

欢迎来CILMY23的博客喔,本篇为【C语言】文件操作揭秘:C语言中文件的顺序读写、随机读写、判断文件结束和文件缓冲区详细解析【图文详解】,感谢观看,支持的可以给个一键三连,点赞关注收藏。 前言 欢迎来到本篇博客&…

如何备考2025年AMC8竞赛?吃透2000-2024年600道真题(免费送题)

最近有家长朋友问我,现在有哪些类似于奥数的比赛可以参加?我的建议可以关注下AMC8的竞赛,类似于国内的奥数,但是其难度要比国内的奥数低一些,而且比赛门槛更低,考试也更方便。比赛的题目尤其是应用题比较有…

Redis开源协议变更!Garnet:微软开源代替方案?

Garnet:微软开源的高性能替代方案,秉承兼容 RESP 协议的同时,以卓越性能和无缝迁移能力重新定义分布式缓存存储! - 精选真开源,释放新价值。 概览 最近,Redis修改了开源协议,从BSD变成了 SSPLv…

第二十一章 Jquery ajax

文章目录 1. jquery下载2. jquery的使用3. jquery页面加载完毕执行4. jquery属性控制6. 遍历器 2. ajax1. 准备后台服务器2. ajax发送get请求3. ajax发送post请求 1. jquery下载 点击下载 稳定版本1.9 2. jquery的使用 存放到html文件的同级目录 3. jquery页面加载完毕执行…

Unity | 射线检测及EventSystem总结

目录 一、知识概述 1.Input.mousePosition 2.Camera.ScreenToWorldPoint 3.Camera.ScreenPointToRay 4.Physics2D.Raycast 二、射线相关 1.3D(包括UI)、射线与ScreenPointToRay 2.3D(包括UI)、射线与ScreenToWorldPoint …

Linux安装redis(基于CentOS系统,Ubuntu也可参考)

前言:本文内容为实操记录,仅供参考! 一、下载并解压Redis 1、执行下面的命令下载redis:wget https://download.redis.io/releases/redis-6.2.6.tar.gz 2、解压redis:tar xzf redis-6.2.6.tar.gz 3、移动redis目录&a…

“直播曝光“有哪些媒体直播分流资源?

传媒如春雨,润物细无声,大家好,我是51媒体网胡老师。 我们线下举办活动时,往往希望活动进行更大的曝光,随着视频直播越来越被大众认可,甚至成了活动的标配,那么做活动视频直播的时候&#xff0…

admin端

一、创建项目 1.1 技术栈 1.2 vite 项目初始化 npm init vitelatest vue3-element-admin --template vue-ts 1.3 src 路径别名配置 Vite 配置 配置 vite.config.ts // https://vitejs.dev/config/import { UserConfig, ConfigEnv, loadEnv, defineConfig } from vite im…

|行业洞察·趋势报告|《2024旅游度假市场简析报告-17页》

报告的主要内容解读: 居民收入提高推动旅游业发展:报告指出,随着人均GDP的提升,居民的消费能力增强,旅游需求从传统的观光游向休闲、度假游转变,国内人均旅游消费持续增加。 政府政策促进旅游市场复苏&…

公众号的AI聊天机器人已修复!谷歌Gemini Pro 10大使用场景解析

大家好,我是木易,一个持续关注AI领域的互联网技术产品经理,国内Top2本科,美国Top10 CS研究生,MBA。我坚信AI是普通人变强的“外挂”,所以创建了“AI信息Gap”这个公众号,专注于分享AI全维度知识…

WorkPlus Meet构建局域网视频会议解决方案,助力企业协同与沟通

在当今数字化时代,局域网视频会议扮演着企业协同与沟通的重要角色。而选择适合的局域网视频会议平台能够提升企业的协作效率与沟通效果。WorkPlus Meet以其卓越的性能和强大的功能,成为企业局域网视频会议的首选。 局域网视频会议的优势与作用不言而喻。…

蓝桥杯-卡片换位

solution 有一个测试点没有空格&#xff0c;要特别处理&#xff0c;否则会有一个测试点运行错误&#xff01; 还有输入数据的规模在变&#xff0c;小心顺手敲错了边界条件 #include<iostream> #include<string> #include<queue> #include<map> #incl…