数据分析-Pandas分类数据的比较如何避坑

数据分析-Pandas分类数据的比较如何避坑

数据分析和处理中,难免会遇到各种数据,那么数据呈现怎样的规律呢?不管金融数据,风控数据,营销数据等等,莫不如此。如何通过图示展示数据的规律?

数据表,时间序列数据在数据分析建模中很常见,例如天气预报,空气状态监测,股票交易等金融场景。数据分析过程中重新调整,重塑数据表是很重要的技巧,此处选择Titanic数据,以及巴黎、伦敦欧洲城市空气质量监测 N O 2 NO_2 NO2数据作为样例。

数据分析

数据分析-Pandas如何转换产生新列

数据分析-Pandas如何统计数据概况

数据分析-Pandas如何轻松处理时间序列数据

数据分析-Pandas如何选择数据子集

数据分析-Pandas如何重塑数据表-CSDN博客

本文用到的样例数据:

Titanic数据

空气质量监测 N O 2 NO_2 NO2数据

样例代码:

源代码参考 Pandas如何重塑数据表

源代码参考 python数据分析-数据表读写到pandas

导入关键模块

import pandas as pd
import numpy as np

实验数据分析处理,股票序列,时间序列,信号序列,有时候表格的数据并不完全是数值类型,也有可能是字符串,或者其他数据,需要做分类处理。pandas如何控制数据分类处理呢?需要配置哪些参数?

分类数据的比较

有三种情况,可以将分类数据与其他对象进行比较:

  • 与列表类的比较相等,例如相同长度的类似列表的对象(如列表、序列、数组…)。
  • 分类数据之间的比较,它们对应数值是否相同,比较操作包括==``!=``>``>=``<``<=
  • 分类数据的所有数值与标量的比较。

所有其他的比较,尤其是两个类别的“不相等”比较,具有不同的 类别或具有任何类似列表的对象的分类将引发 错误.TypeError

In [112]: cat = pd.Series([1, 2, 3]).astype(CategoricalDtype([3, 2, 1], ordered=True))
In [113]: cat_base = pd.Series([2, 2, 2]).astype(CategoricalDtype([3, 2, 1], ordered=True))
In [114]: cat_base2 = pd.Series([2, 2, 2]).astype(CategoricalDtype(ordered=True))In [115]: cat
Out[115]: 
0    1
1    2
2    3
dtype: category
Categories (3, int64): [3 < 2 < 1]In [116]: cat_base
Out[116]: 
0    2
1    2
2    2
dtype: category
Categories (3, int64): [3 < 2 < 1]In [117]: cat_base2
Out[117]: 
0    2
1    2
2    2
dtype: category
Categories (1, int64): [2]

具有相同类别和顺序特性的分类比较,或与标量进行比较:

In [118]: cat > cat_base
Out[118]: 
0     True
1    False
2    False
dtype: boolIn [119]: cat > 2
Out[119]: 
0     True
1    False
2    False
dtype: bool

与类似列表对象的相等比较,适用于任何具有相同长度的类似列表对象,和标量的比较:

In [120]: cat == cat_base
Out[120]: 
0    False
1     True
2    False
dtype: boolIn [121]: cat == np.array([1, 2, 3])
Out[121]: 
0    True
1    True
2    True
dtype: boolIn [122]: cat == 2
Out[122]: 
0    False
1     True
2    False
dtype: bool

当类别不相同时,比较就会报错:

In [123]: try:.....:     cat > cat_base2.....: except TypeError as e:.....:     print("TypeError:", str(e)).....: 
TypeError: Categoricals can only be compared if 'categories' are the same.

但是,如果要做不相等的比较,比如分类数据与类似列表的对象进行“不相等”比较,就需要显式转换为原始数据再做比较。:

In [124]: base = np.array([1, 2, 3])In [125]: try:.....:     cat > base.....: except TypeError as e:.....:     print("TypeError:", str(e)).....: 
TypeError: Cannot compare a Categorical for op __gt__ with type <class 'numpy.ndarray'>.
If you want to compare values, use 'np.asarray(cat) <op> other'.In [126]: np.asarray(cat) > base
Out[126]: array([False, False, False])

当比较具有相同类别的两个无序分类时,不考虑顺序:

In [127]: c1 = pd.Categorical(["a", "b"], categories=["a", "b"], ordered=False)
In [128]: c2 = pd.Categorical(["a", "b"], categories=["b", "a"], ordered=False)In [129]: c1 == c2
Out[129]: array([ True,  True])

以上代码只是一个简单示例,示例代码中的表达式可以根据实际问题进行修改。

后面介绍下其他的展示形式。

觉得有用 收藏 收藏 收藏

点个赞 点个赞 点个赞

End

GPT专栏文章:

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

大模型查询工具助手之股票免费查询接口

GPT实战系列-简单聊聊LangChain

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-探究GPT等大模型的文本生成-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/768296.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Lombok简单使用

1、介绍 Lombok是一个Java库&#xff0c;它通过注解的方式简化了Java代码的编写。它提供了一些注解&#xff0c;可以自动生成一些常用的代码&#xff0c;如getter和setter方法、构造函数、equals和hashCode方法等。使用Lombok可以减少冗余的代码&#xff0c;提高开发效率。 2…

Rust 程序设计语言学习——结构体

结构体和元组类似&#xff0c;它们都包含多个相关的值。和元组一样&#xff0c;结构体的每一部分可以是不同类型。但不同于元组&#xff0c;结构体需要命名各部分数据以便能清楚的表明其值的意义。由于有了这些名字&#xff0c;结构体比元组更灵活&#xff1a;不需要依赖顺序来…

医院预约挂号系统设计与实现|jsp+ Mysql+Java+ Tomcat(可运行源码+数据库+设计文档)

本项目包含可运行源码数据库LW&#xff0c;文末可获取本项目的所有资料。 推荐阅读100套最新项目 最新ssmjava项目文档视频演示可运行源码分享 最新jspjava项目文档视频演示可运行源码分享 最新Spring Boot项目文档视频演示可运行源码分享 2024年56套包含java&#xff0c;…

【WPF应用11】如何对StackPanel中的控件进行间距设置?

在WPF中&#xff0c;堆叠面板&#xff08;StackPanel&#xff09;是一个常用的布局控件&#xff0c;它允许您将子控件垂直或水平堆叠起来。在设计用户界面时&#xff0c;合理的间距设置可以提高界面的美观性和易用性。本文将介绍如何在StackPanel控件中设置控件之间的间距&…

初识kafka-数据存储篇1

目录 背景 1 kafka总体体系结构 2 疑问解答 2.1 高吞吐低延迟 2.2 实现分布式存储和数据读取 2.3 如何保证数据不丢失 背景 最近在和产品过项目审批的时候&#xff0c;深刻感受到业务方对系统的时时响应提出了更高的要求。目前手上大部分的业务都是基础定时任务去实现的&…

nodejs+vue高校会议室预订管理系统python-flask-django-php

伴随着我国社会的发展&#xff0c;人民生活质量日益提高。于是对系统进行规范而严格是十分有必要的&#xff0c;所以许许多多的信息管理系统应运而生。此时单靠人力应对这些事务就显得有些力不从心了。所以本论文将设计一套高校会议室预订管理系统&#xff0c;帮助学校进行会议…

JDK,JRE,JVM之间的关系

他们明面上的关系是JDK包含JRE&#xff0c;JRE包含JVM。 简单理解JDK就是Java开发工具包。JRE是Java运行环境。JVM是Java虚拟机。 JDK是面向开发者的&#xff0c;JRE是面向JAVA程序的用户的。也就是说开发者开发JAVA程序是需要用到JDK&#xff0c;如果用户不去开发JAVA程序&am…

【WPF应用10】基本控件-StackPanel:布局原理与实际应用

在Windows Presentation Foundation&#xff08;WPF&#xff09;中&#xff0c;布局是用户界面设计的核心部分&#xff0c;它决定了控件如何排列和空间如何分配。WPF提供了一系列布局面板&#xff08;Panel&#xff09;&#xff0c;以便开发者可以根据需要灵活地组织控件。在这…

OpenHarmony IDL工具规格及使用说明书(仅对系统应用开放)

IDL接口描述语言简介 当客户端和服务器进行IPC通信时&#xff0c;需要定义双方都认可的接口&#xff0c;以保障双方可以成功通信&#xff0c;OpenHarmony IDL&#xff08;OpenHarmony Interface Definition Language&#xff09;则是一种定义此类接口的工具。OpenHarmony IDL先…

掌握 Unity 中的状态机:综合指南

作者简介: 高科,先后在 IBM PlatformComputing从事网格计算,淘米网,网易从事游戏服务器开发,拥有丰富的C++,go等语言开发经验,mysql,mongo,redis等数据库,设计模式和网络库开发经验,对战棋类,回合制,moba类页游,手游有丰富的架构设计和开发经验。 (谢谢你的关注…

初识 Redis 浅谈分布式

目 录 一.认识 Redis二.浅谈分布式单机架构分布式是什么数据库分离和负载均衡理解负载均衡数据库读写分离引入缓存数据库分库分表引入微服务 三.概念补充四.分布式小结 一.认识 Redis 在 Redis 官网我们可以看到介绍 翻译过来就是&#xff1a;数以百万计的开发人员用作缓存、…

nodejs+vue高校社团管理小程序的设计与实现python-flask-django-php

相比于以前的传统手工管理方式&#xff0c;智能化的管理方式可以大幅降低学校的运营人员成本&#xff0c;实现了高校社团管理的标准化、制度化、程序化的管理&#xff0c;有效地防止了高校社团管理的随意管理&#xff0c;提高了信息的处理速度和精确度&#xff0c;能够及时、准…

t-rex2开放集目标检测

论文链接&#xff1a;http://arxiv.org/abs/2403.14610v1 项目链接&#xff1a;https://github.com/IDEA-Research/T-Rex 这篇文章的工作是基于t-rex1的工作继续做的&#xff0c;核心亮点&#xff1a; 是支持图片/文本两种模态的prompt进行输入&#xff0c;甚至进一步利用两…

CCF-CSP认证考试 202303-5 施肥 35/60/75/100分题解

更多 CSP 认证考试题目题解可以前往&#xff1a;CSP-CCF 认证考试真题题解 原题链接&#xff1a; 202303-5 施肥 时间限制&#xff1a; 2.0s 内存限制&#xff1a; 1.0GB 问题描述 春天到了&#xff0c;西西艾弗岛上的 n n n 块田地需要施肥了。 n n n 块田地编号为 1 , 2…

基于Google云原生工程师的kubernetes最佳实践(二)

目录 二、应用部署篇 为deployment打上丰富的label,以便selecting 使用sidecar容器部署agent、proxy等组件 使用init container处理依赖关系,而不要用sidecar 镜像tag使用版本号,不要用latest或空tag 为pod设置readiness和liveness探针 不要给所有服务都使用LoadBalance…

【微服务】以模块化单体架构开发微服务应用

目录 推荐超级课程: Docker快速入门到精通Kubernetes入门到大师通关课AWS云服务快速入门实战我们知道,起初,单体应用有显著的优势:它们更容易开发和部署。从开发人员的角度来看,这种简单性是有益的。一切都是集中的,可以快速更新任何部分的业务逻辑并立即看到结果。这种开…

竞赛 python opencv 深度学习 指纹识别算法实现

1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; python opencv 深度学习 指纹识别算法实现 &#x1f947;学长这里给一个题目综合评分(每项满分5分) 难度系数&#xff1a;3分工作量&#xff1a;4分创新点&#xff1a;4分 该项目较为新颖…

ETL数据倾斜与资源优化

1.数据倾斜实例 数据倾斜在MapReduce编程模型中比较常见&#xff0c;由于key值分布不均&#xff0c;大量的相同key被存储分配到一个分区里&#xff0c;出现只有少量的机器在计算&#xff0c;其他机器等待的情况。主要分为JOIN数据倾斜和GROUP BY数据倾斜。 1.1GROUP BY数据倾…

第七届蓝桥杯大赛软件赛省赛Java 大学C组题解

文章目录 A 有奖猜谜思路解题方法复杂度Code B 煤球数目思路解题方法复杂度Code C 平方怪圈思路解题方法复杂度Code D 凑算式思路解题方法复杂度Code E 搭积木思路解题方法复杂度Code F 冰雹数思路解题方法复杂度Code G 四平方和思路解题方法复杂度Code I 密码脱落思路解题方法…

Windows + RTX4090驱动,CUDA安装

Nvidia驱动下载安装 NVIDA Drivers驱动 https://www.nvidia.com/Download/index.aspx?langen-us CUDA安装 https://developer.nvidia.com/cuda-toolkit-archive ​ &#xff08;1&#xff09;nvidia-smi -L查看自己的显卡型号。 &#xff08;2&#xff09;然后在https://ww…