文章目录
- 三角函数
- 定义式
- 诱导公式
- 平方关系
- 两角和与差的三角函数
- 积化和差公式
- 和差化积公式
- 倍角公式
- 半角公式
- 万能公式
- 其他公式
- 反三角函数恒等式
 
- 三角函数
- 定义式
 
 
三角函数
定义式

 
 余切:  c o t A = 1 t a n A \text { 余切:} \ cotA = \frac{1}{tanA}  余切: cotA=tanA1
  正切:  s e c A = 1 c o s A \text { 正切:} \ secA = \frac{1}{cosA}  正切: secA=cosA1
  余割:  c s c A = 1 s i n A \text { 余割:} \ cscA = \frac{1}{sinA}  余割: cscA=sinA1
反正切: a r c t a n ( t a n X ) = t a n ( a r c t a n X ) = X \text { 反正切:} \ arctan(tanX) = tan(arctanX) = X 反正切: arctan(tanX)=tan(arctanX)=X
诱导公式
- sin  ( − α ) = − sin  α
- cos  ( − α ) = cos  α
- sin  ( π 2 − α ) = cos  α
- cos  ( π 2 − α ) = sin  α
- sin  ( π 2 + α ) = cos  α
- cos  ( π 2 + α ) = − sin  α
- sin  ( π − α ) = sin  α
- cos  ( π − α ) = − cos  α
- sin  ( π + α ) = − sin  α
- cos  ( π + α ) = − cos  α
平方关系
 1 + t a n 2 α = s e c 2 α 1 + tan^2α = sec^2α 1+tan2α=sec2α
  1 + c o t 2 α = c s c 2 α 1 + cot^2α = csc^2α 1+cot2α=csc2α
  s i n 2 α + c o s 2 α = 1 sin^2α + cos^2α = 1 sin2α+cos2α=1
两角和与差的三角函数
 s i n  ( α + β ) = s i n  α c o s  β + c o s  α s i n  β sin  ( α + β ) = sin  α cos  β + cos  α sin  β sin(α+β)=sinαcosβ+cosαsinβ
  c o s  ( α + β ) = c o s  α c o s  β − s i n  α s i n  β cos  ( α + β ) = cos  α cos  β − sin  α sin  β cos(α+β)=cosαcosβ−sinαsinβ
  s i n  ( α − β ) = s i n  α c o s  β − c o s  α s i n  β sin  ( α − β ) = sin  α cos  β − cos  α sin  β sin(α−β)=sinαcosβ−cosαsinβ
  c o s  ( α − β ) = c o s  α c o s  β + s i n  α s i n  β cos  ( α − β ) = cos  α cos  β + sin  α sin  β cos(α−β)=cosαcosβ+sinαsinβ
  t a n  ( α + β ) = t a n  α + t a n  β 1 − t a n  α t a n  β tan  ( α + β ) = \frac{ tan  α + tan  β}{1 - tan  α tan  β} tan(α+β)=1−tanαtanβtanα+tanβ
  t a n  ( α − β ) = t a n  α − t a n  β 1 + t a n  α t a n  β tan  ( α − β ) = \frac{ tan  α - tan  β}{1 + tan  α tan  β} tan(α−β)=1+tanαtanβtanα−tanβ
积化和差公式
 c o s  α c o s  β = 1 2 [ c o s  ( α + β ) + c o s ( α − β ) ] cos  α cos  β = \frac{1}{2} [ cos  ( α + β ) + c o s ( α − β ) ] cosαcosβ=21[cos(α+β)+cos(α−β)]
  c o s  α s i n  β = 1 2 [ s i n  ( α + β ) − s i n ( α − β ) ] cos  α sin  β = \frac{1}{2} [ sin  ( α + β ) - sin ( α − β ) ] cosαsinβ=21[sin(α+β)−sin(α−β)]
  s i n  α c o s  β = 1 2 [ s i n  ( α + β ) + s i n ( α − β ) ] sin  α cos  β = \frac{1}{2} [ sin  ( α + β ) + sin ( α − β ) ] sinαcosβ=21[sin(α+β)+sin(α−β)]
  s i n  α s i n  β = − 1 2 [ c o s  ( α + β ) + c o s ( α − β ) ] sin  α sin  β = -\frac{1}{2} [ cos  ( α + β ) + c o s ( α − β ) ] sinαsinβ=−21[cos(α+β)+cos(α−β)]
和差化积公式
 s i n  α + s i n  β = 2 s i n  α + β 2 c o s  α − β 2 sin  α + sin  β = 2 sin  \frac{α + β}{2} cos  \frac{α - β}{2} sinα+sinβ=2sin2α+βcos2α−β
  s i n  α − s i n  β = 2 c o s  α + β 2 s i n  α − β 2 sin  α - sin  β = 2 cos  \frac{α + β}{2} sin  \frac{α - β}{2} sinα−sinβ=2cos2α+βsin2α−β
  c o s  α + c o s  β = 2 c o s  α + β 2 c o s  α − β 2 cos  α + cos  β = 2 cos  \frac{α + β}{2} cos  \frac{α - β}{2} cosα+cosβ=2cos2α+βcos2α−β
  c o s  α − c o s  β = − 2 s i n  α + β 2 s i n  α − β 2 cos  α - cos  β = -2 sin  \frac{α + β}{2} sin  \frac{α - β}{2} cosα−cosβ=−2sin2α+βsin2α−β
倍角公式
 s i n  2 α = 2 s i n  α c o s α sin  2 α = 2 sin  α cos α sin2α=2sinαcosα
  c o s  2 α = c o s  2 α − s i n  2 α = 1 − 2 s i n  2 α = 2 c o s  2 α − 1 cos  2 α = cos ^2 α − sin  ^2 α = 1 − 2 sin  ^2 α = 2 cos  ^2 α − 1 cos2α=cos2α−sin2α=1−2sin2α=2cos2α−1
  s i n  3 α = − 4 s i n  3 α + 3 s i n  α sin  3 α = − 4 sin  ^3 α + 3 sin  α sin3α=−4sin3α+3sinα
  c o s  3 α = 4 c o s  3 α − 3 c o s  α cos  3 α = 4 cos  ^3 α − 3 cos  α cos3α=4cos3α−3cosα
  s i n  2 α = 1 − c o s  2 α 2 sin  ^2 α = \frac{1 − cos  2 α}{2} sin2α=21−cos2α
  c o s  2 α = 1 + c o s  2 α 2 cos  ^2 α = \frac{1 + cos  2 α}{2} cos2α=21+cos2α
  t a n  2 α = 2 t a n  α 1 − t a n  2 α tan  2 α = \frac{2 tan  α}{1 − tan  ^2 α } tan2α=1−tan2α2tanα
  c o t  2 α = c o t  2 α − 1 2 c o t  α cot  2 α = \frac{cot  ^2 α − 1}{2 cot  α} cot2α=2cotαcot2α−1
半角公式
 s i n  2 α 2 = 1 − c o s  α 2 sin  ^2 \frac{α}{2} = \frac{1 − cos  α}{2} sin22α=21−cosα
  c o s  2 α 2 = 1 + c o s  α 2 cos  ^2 \frac{α}{2} = \frac{1 + cos  α}{2} cos22α=21+cosα
  s i n α 2 = ± 1 − c o s  α 2 sin \frac{α}{2} = ±\sqrt{\frac{1 - cos  α}{2}} sin2α=±21−cosα
  c o s α 2 = ± 1 + c o s  α 2 cos \frac{α}{2} = ±\sqrt{\frac{1 + cos  α}{2}} cos2α=±21+cosα
  t a n α 2 = 1 − c o s  α s i n  α = s i n  α 1 + c o s  α = ± 1 − c o s  α 1 + c o s  α tan \frac{α}{2} = \frac{1 - cos  α}{sin  α} = \frac{sin  α}{1 + cos  α } = ±\sqrt{\frac{1 - cos  α}{1 + cos  α}} tan2α=sinα1−cosα=1+cosαsinα=±1+cosα1−cosα
  c o t α 2 = s i n  α 1 − c o s  α = 1 + c o s  α s i n  α = ± 1 + c o s  α 1 − c o s  α cot \frac{α}{2} = \frac{sin  α}{1 - cos  α} = \frac{1 + cos  α }{sin  α } = ±\sqrt{\frac{1 + cos  α}{1 - cos  α}} cot2α=1−cosαsinα=sinα1+cosα=±1−cosα1+cosα
万能公式
 s i n α = 2 t a n  α 2 1 + t a n 2  α 2 sin α = \frac{2tan \frac{α}{2}}{1 + tan ^2 \frac{α}{2}} sinα=1+tan22α2tan2α
  c o s α = 1 − t a n 2  α 2 1 + t a n 2  α 2 cos α = \frac{1 - tan ^2 \frac{α}{2}}{1 + tan ^2 \frac{α}{2}} cosα=1+tan22α1−tan22α
其他公式
 1 + s i n  α = ( s i n  α 2 + c o s  α 2 ) 2 1 + sin  α = ( sin \frac{α}{2} + cos \frac{α}{2}) ^2 1+sinα=(sin2α+cos2α)2
  1 − s i n  α = ( s i n  α 2 − c o s  α 2 ) 2 1 - sin  α = ( sin \frac{α}{2} - cos \frac{α}{2}) ^2 1−sinα=(sin2α−cos2α)2
反三角函数恒等式
 a r c s i n  x + a r c c o s  x =  π 2 arcsin  x + arccos  x = \frac{π}{2} arcsinx+arccosx=2π
  a r c t a n  x + a r c c o t  x =  π 2 arctan  x + arccot  x = \frac{π}{2} arctanx+arccotx=2π
  s i n  ( a r c c o s  x ) = 1 − x 2 sin  ( arccos  x ) = \sqrt{1 − x ^2} sin(arccosx)=1−x2
  c o s  ( a r c s i n  x ) = 1 − x 2 cos  ( arcsin  x ) = \sqrt{1 − x ^2} cos(arcsinx)=1−x2
  s i n  ( a r c s i n  x ) = x sin  ( arcsin  x ) = x sin(arcsinx)=x
  a r c s i n  ( s i n  x ) = x arcsin  ( sin  x ) = x arcsin(sinx)=x
  c o s  ( a r c c o s  x ) = x cos  ( arccos  x ) = x cos(arccosx)=x
  a r c c o s  ( c o s  x ) = x arccos  ( cos  x ) = x arccos(cosx)=x
  a r c c o s  ( − x ) = π − a r c c o s  x arccos  ( − x ) = π − arccos  x arccos(−x)=π−arccosx