【机器学习】Adam优化算法

原理

Adam(Adaptive Moment Estimation)是一种常用的优化算法,结合了AdaGrad和RMSProp算法的优点。它通过自适应地调整学习率来优化神经网络模型的参数。

Adam算法的工作原理如下:

1. 初始化参数:

  • 初始化模型的参数,包括权重和偏置。
  • 初始化两个一阶矩估计变量m和二阶矩估计变量v,它们的维度与模型的参数相同,初始值为0。

2. 计算梯度:

  • 使用随机梯度下降(SGD)或其他优化算法计算当前批次样本的梯度。

3. 更新一阶矩估计变量m和二阶矩估计变量v:

  • 计算当前梯度的一阶矩估计(平均梯度)m:m = β₁m + (1-β₁)g
  • 计算当前梯度的二阶矩估计(平方梯度的指数加权移动平均)v:v = β₂v + (1-β₂)g²
    (其中,g表示当前梯度,β₁和β₂是可调节的指数衰减率,一般取值分别为0.9和0.999)

4. 校正一阶矩估计变量m和二阶矩估计变量v的偏差:

  • 对一阶矩估计变量m进行校正:m̂ = m / (1 - β₁^t)
  • 对二阶矩估计变量v进行校正:v̂ = v / (1 - β₂^t)
    (其中,t表示当前迭代次数)

5. 更新模型参数:

  • 根据校正后的一阶矩估计变量m̂和二阶矩估计变量v̂以及学习率α,更新模型参数:
    θ = θ - α * m̂ / (√(v̂) + ε)
    (其中,θ表示模型的参数,ε是一个很小的数,如10^-8,用于避免除零错误)

通过以上步骤,Adam算法可以自适应地调整学习率,并且在训练过程中根据梯度的大小和稳定性对学习率进行调节,从而提高了模型的收敛速度和稳定性。它被广泛应用于深度学习模型的训练中,并且通常能够取得较好的优化效果。

总结

Adam将随机梯度下降法两种扩展的优势结合在一起:

  • 自适应梯度算法(AdaGrad)维护一个参数的学习速率,可以提高在稀疏梯度问题上的性能(例如,自然语言和计算机视觉问题)。
  • 均方根传播(RMSProp)也维护每个参数的学习速率,根据最近的权重梯度的平均值(例如变化的速度)来调整。这意味着该算法在线上和非平稳问题上表现良好(如:噪声)。

Adam优化算法的优点包括:

  1. 自适应学习率:Adam算法可以自适应地调整每个参数的学习率,根据其梯度的一阶矩估计和二阶矩估计进行调节,有助于加速模型收敛。

  2. 高效的参数更新:通过对梯度的一阶矩估计和二阶矩估计进行指数加权移动平均,Adam算法在更新参数时考虑了梯度的历史信息,有助于平稳地更新参数。

  3. 鲁棒性:Adam对超参数的选择相对较为鲁棒,通常不需要过多的调参即可在不同问题上表现良好。

然而,Adam算法也存在一些缺点,包括:

  1. 对超参数敏感:虽然Adam算法相对于其他优化算法来说对超参数的选择更加鲁棒,但仍然需要调整一些超参数,如β₁、β₂和学习率等,以获得最佳的性能。

  2. 内存消耗较大:由于Adam算法需要维护每个参数的一阶矩估计和二阶矩估计,因此在内存消耗方面略高,特别是在参数较多的大型模型中。

  3. 可能存在过拟合风险:在某些情况下,Adam算法可能会使模型在训练集上过拟合,特别是在小样本数据集上的应用时需要小心。

综合来看,Adam算法在深度学习中被广泛使用,并且通常能够取得较好的优化效果。

可以参考本视频

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/735770.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringCloud-基于SpringAMQP实现消息队列

一、Spring AMQP介绍 Spring AMQP作为Spring框架的一部分,是一套用于支持高级消息队列协议(AMQP)的工具。AMQP是一种强大的消息协议,旨在支持可靠的消息传递,特别适用于构建分布式系统。Spring AMQP构建在RabbitMQ之上…

三栏布局的实现方法

1. 什么是三栏布局 常见的一种页面布局方式,将页面分为左栏、中栏和右栏左右两侧的盒子宽度固定,中间的盒子会随屏幕自适应一般中间放主体内容,左右两边放辅助内容 2. 如何实现三栏布局 2.1 弹性布局 将最外层盒子设为弹性布局&#xff0…

爬虫入门到精通_框架篇16(Scrapy框架基本使用_名人名言的抓取

1 目标站点分析 抓取网站:http://quotes.toscrape.com/ 主要显示了一些名人名言,以及作者、标签等等信息: 点击next,page变为2: 2 流程框架 抓取第一页:请求第一页的URL并得到源代码,进行下…

Spring Cloud Gateway核心之Filter、自定义全局Filter、自定义局部Filter介绍

SpringCloudGateway-核心之Filter-自定义全局Filter-自定义局部Filter介绍 核心之Filter 路由过滤器允许以某种方式修改传入的 HTTP 请求或传出的 HTTP 响应。 路由过滤器的范围仅限于特定路由。 Spring Cloud Gateway 包含许多内置的 GatewayFilter Factory。 AddRequestHead…

基于鹦鹉优化算法(Parrot optimizer,PO)的无人机三维路径规划(提供MATLAB代码)

一、无人机路径规划模型介绍 无人机三维路径规划是指在三维空间中为无人机规划一条合理的飞行路径,使其能够安全、高效地完成任务。路径规划是无人机自主飞行的关键技术之一,它可以通过算法和模型来确定无人机的航迹,以避开障碍物、优化飞行…

《计算机网络》考研:2024/3/7 2.1.4 奈氏准则和香农定理

2024/3/7 (作者转行去干LLMs了,但是又想搞定考研,忙不过来了就全截图了呜呜呜。。。 生活真不容易。) 2.1.4 奈氏准则与香农定理

RocketMQ、Kafka、RabbitMQ 消费原理,顺序消费问题【图文理解】

B站视频地址 文章目录 一、开始二、结果1、RocketMQ 消费关系图1-1、queue和consumer的关系1-2、consumer 和线程的关系 2、Kafka 消费关系图1-1、partitions和consumer的关系1-2、consumer 和线程的关系 3、RabbitMQ 消费关系图1-1、queue和consumer的关系1-2、consumer 和线程…

基于美洲狮优化算法(Puma Optimizar Algorithm ,POA)的无人机三维路径规划(提供MATLAB代码)

一、无人机路径规划模型介绍 无人机三维路径规划是指在三维空间中为无人机规划一条合理的飞行路径,使其能够安全、高效地完成任务。路径规划是无人机自主飞行的关键技术之一,它可以通过算法和模型来确定无人机的航迹,以避开障碍物、优化飞行…

【牛客】VL68 同步FIFO

描述 请设计带有空满信号的同步FIFO,FIFO的深度和宽度可配置。双口RAM的参考代码和接口信号已给出,请在答案中添加并例化此部分代码。 电路的接口如下图所示。端口说明如下表。 接口电路图如下: 双口RAM端口说明: 端口名I/O描述…

k8s中replication controller组件

背景 为了保证正常运行的pod的数量满足我们的要求,k8s中退出了replication controller的概念,这个组件的主要作用就是保证有指定数量的pod运行在集群中 replication controller组件 1.我们先看一下replication controller组件的配置文件定义 kind&am…

docker容器的数据卷

1配置数据卷 docker run --namen01 -d --restartalways -p 80:80 -v /qy172/data/nginx/html:/usr/share/nginx/html nginx 2Docker应用部署 1搜索mysql镜像 docker search mysql 2拉取mysql镜像 docker pull mysql:5.6 3创建容器, 设置端口映射、目录映射 d…

Go微服务:基于net/rpc模块实现微服务远程调用

基于RPC协议实现微服务 基于rpc实现跨语言调用,不限定服务提供方使用的语言在微服务架构中,每个微服务都被封装成了进程,相互独立在这里提供了客户端和服务端演示调用示例 1 )服务端 新建 server/msg 目录,后执行 $…

GEE:基于ERA5数据集(U和V风速分量)计算风速的幅值和风向

作者:CSDN @ _养乐多_ 本文将介绍使用Google Earth Engine (GEE)平台提供的API加载ERA5月度数据集,该数据集包含了从1979年至今的全球月度气象数据。然后,定义了一个数据计算函数,用于将U和V风速分量转换为风速的幅值和风向。 结果如下图所示, 文章目录 一、核心函数1…

代码随想录day36:动态规划part4,背包问题

文章目录 day36:动态规划part4,背包问题01背包416.分割等和子集 day36:动态规划part4,背包问题 01背包 https://kamacoder.com/problempage.php?pid1046 二维数组版本: dp[i][j]里的i和j表达的是什么了&#xff0…

基于docker 配置hadoop-hive-spark-zeppelin环境进行大数据项目的开发

转载于: 基于docker的spark-hadoop分布式集群之一: 环境搭建 - Fordestiny - 博客园 (cnblogs.com) ---------------------------------------------------------- 如有侵权请私信,看到私信后会立即删除... ------------------------------…

计算机设计大赛 行人重识别(person reid) - 机器视觉 深度学习 opencv python

文章目录 0 前言1 技术背景2 技术介绍3 重识别技术实现3.1 数据集3.2 Person REID3.2.1 算法原理3.2.2 算法流程图 4 实现效果5 部分代码6 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习行人重识别(person reid)系统 该项目…

hive分区和分桶你熟悉吗?

两种用于优化查询性能的数据组织策略,数仓设计的关键概念,可提升Hive在读取大量数据时的性能。 1 分区(Partitioning) 根据表的某列的值来组织数据。每个分区对应一个特定值,并映射到HDFS的不同目录。 常用于经常查…

Keepalived工具的基本介绍(原理:VRRP协议)

目录 一、keepalived工作原理 1、VRRP 1.1 VRRP相关术语 1.2 VRRP相关技术 1.3 VRRP工作过程 2、keepalived介绍 2.1 Keepalived架构 3、keepalived的工作原理 3.1Keepalived高可用故障切换转移原理 4、脑裂 4.1什么是脑裂? 4.2造成脑裂的原因有哪些&am…

力扣--76. 最小覆盖子串

给你一个字符串 s 、一个字符串 t 。返回 s 中涵盖 t 所有字符的最小子串。如果 s 中不存在涵盖 t 所有字符的子串,则返回空字符串 "" 。 注意: 对于 t 中重复字符,我们寻找的子字符串中该字符数量必须不少于 t 中该字符数量。如…

外边距折叠的原因和解决

参考文章 什么时候出现外边距塌陷 外边距塌陷,也叫外边距折叠,在普通文档流中,在垂直方向上的2个或多个相邻的块级元素(父子或者兄弟)外边距合并成一个外边距的现象,不过只有上下外边距才会有塌陷&#x…