剖析HashMap
本文为书籍《Java编程的逻辑》1和《剑指Java:核心原理与应用实践》2阅读笔记
1.1 Map 接口
Map是映射,有键和值的概念,映射表示键和值之间的对应关系,一个键映射到一个值,Map按照键存储和访问值,键不能重复,即一个键只会存储一份,给同一个键重复设值会覆盖原来的值。使用Map可以方便地处理需要根据键访问对象的场景,比如:
- 一个词典应用,键可以为单词,值可以为单词信息类,包括含义、发音、例句等;
- 统计和记录一本书中所有单词出现的次数,可以以单词为键,以出现次数为值;
- 管理配置文件中的配置项,配置项是典型的键值对;
- 根据身份证号查询人员信息,身份证号为键,人员信息为值。
Map接口的定义如代码清单如下所示:
public interface Map<K, V> { // K 和 V 是类型参数,分别表示键(key)和值(value)的类型V put(K key, V value); // 保存键值对,如果原来有 key,覆盖,返回原来的值V get(Object key); // 根据键获取值, 没找到,返回 nullV remove(Object key); // 根据键删除键值对, 返回 key 原来的值,如果不存在,返回 nullint size(); //查看 Map 中键值对的个数boolean isEmpty(); // 是否为空boolean containsKey(Object key); // 查看是否包含某个键boolean containsValue(Object value); // 查看是否包含某个值void putAll(Map<? extends K, ? extends V> m); // 保存 m 中的所有键值对到当前 Mapvoid clear(); // 清空 Map 中所有键值对Set<K> keySet(); //获取 Ma p中键的集合Collection<V> values(); // 获取 Map 中所有值的集合Set<Map.Entry<K, V>> entrySet(); // 获取 Map 中的所有键值对interface Entry<K, V> { // 嵌套接口,表示一条键值对K getKey(); // 键值对的键V getValue(); // 键值对的值V setValue(V value);boolean equals(Object o);int hashCode();}boolean equals(Object o);int hashCode();
}
Java 8增加了一些默认方法,如getOrDefault、forEach、replaceAll、putIfAbsent、replace、computeIfAbsent、merge等,Java 9增加了多个重载的of方法,可以方便地根据一个或多个键值对构建不变的Map,具体可参见API文档或源码。
Set是一个接口,表示的是数学中的集合概念,即没有重复的元素集合。Java中的Set定义为:
public interface Set<E> extends Collection<E> {
}
它扩展了Collection,具体的函数定义这里我们不详细展开了,不过,它要求所有实现者都必须确保Set的语义约束,即不能有重复元素。Map中的键是没有重复的,所以keySet()返回了一个Set。keySet()、values()、entrySet()有一个共同的特点,它们返回的都是视图,不是复制的值,基于返回值的修改会直接修改Map自身,比如:
@Testpublic void testHashMapView(){HashMap<String, String> hashMap = new HashMap<>();hashMap.put("name", "nwq");hashMap.put("age", "18");hashMap.keySet().clear();assertTrue(hashMap.isEmpty());}
hashMap.keySet().clear()会删除所有键值对。
1.2 基本用法
HashMap实现了Map接口,我们通过一个简单的例子来看如何使用。我们写一个程序,来看随机产生的数是否均匀。比如,随机产生 1000 1000 1000个 0 ∼ 3 0\sim3 0∼3的数,统计每个数的次数,代码如下所示:
@Testpublic void testHashMapBasics() {Random rnd = new Random(150);Map<Integer, Integer> countMap = new HashMap<>();for (int i = 0; i < 1000; i++) {int num = rnd.nextInt(4);Integer count = countMap.get(num);if (count == null) {countMap.put(num, 1);} else {countMap.put(num, count + 1);}}StringBuilder stringBuilder = new StringBuilder();for (Map.Entry<Integer, Integer> kv : countMap.entrySet()) {stringBuilder.append(kv.getKey() + ", " + kv.getValue() + ", ");}assertTrue("0, 253, 1, 230, 2, 243, 3, 274, ".equals(stringBuilder.toString()));}
次数分别是 253 253 253、 230 230 230、 243 243 243、 274 274 274。
除了默认构造方法, HashMap还有如下构造方法:
public HashMap(int initialCapacity)
public HashMap(int initialCapacity, float loadFactor)
public HashMap(Map<? extends K, ? extends V> m)
最后一个以一个已有的Map构造,复制其中的所有键值对到当前Map。前两个涉及参数initialCapacity和loadFactor,它们是什么意思呢?我们需要看下HashMap的实现原理。
1.3 实现原理
我们看下HashMap的内部组成以及主要的方法,代码基于java 17分析。
1.3.1 内部组成
HashMap内部有如下几个主要的实例变量:
/*** The table, initialized on first use, and resized as* necessary. When allocated, length is always a power of two.* (We also tolerate length zero in some operations to allow* bootstrapping mechanics that are currently not needed.)*/transient Node<K,V>[] table;/*** The number of key-value mappings contained in this map.*/transient int size;/*** The next size value at which to resize (capacity * load factor).** @serial*/int threshold;/*** The load factor for the hash table.** @serial*/final float loadFactor;
size表示实际键值对的个数。table是一个Node类型的数组,称为哈希表或哈希桶,其中的每个元素指向一个单向链表,链表中的每个节点表示一个键值对。Node是一个内部类,它的实例变量和构造方法代码如下:
/*** Basic hash bin node, used for most entries. (See below for* TreeNode subclass, and in LinkedHashMap for its Entry subclass.)*/static class Node<K,V> implements Map.Entry<K,V> {final int hash;final K key;V value;Node<K,V> next;Node(int hash, K key, V value, Node<K,V> next) {this.hash = hash;this.key = key;this.value = value;this.next = next;}public final K getKey() { return key; }public final V getValue() { return value; }public final String toString() { return key + "=" + value; }public final int hashCode() {return Objects.hashCode(key) ^ Objects.hashCode(value);}public final V setValue(V newValue) {V oldValue = value;value = newValue;return oldValue;}public final boolean equals(Object o) {if (o == this)return true;return o instanceof Map.Entry<?, ?> e&& Objects.equals(key, e.getKey())&& Objects.equals(value, e.getValue());}}
其中,key和value分别表示键和值,next指向下一个Node节点,hash是key的hash值,待会我们会讨论其计算方法。直接存储hash值是为了在比较的时候加快计算。table的初始值为null。在添加键值时,如果table为null,那么,会调用resize(),对table进行扩展,扩展的策略类似于ArrayList。添加第一个元素时,默认分配的大小为 16 16 16,不过,并不是size大于 16 16 16时再进行扩展,下次什么时候扩展与threshold有关。threshold表示阈值,当键值对个数size大于等于threshold时考虑进行扩展。threshold是怎么算出来的呢?一般而言,threshold等于table.length乘以loadFactor。比如,如果table.length为 16 16 16,loadFactor为 0.75 0.75 0.75,则threshold为 12 12 12。loadFactor是负载因子,表示整体上table被占用的程度,是一个浮点数,默认为 0.75 0.75 0.75,可以通过构造方法public HashMap(int initialCapacity, float loadFactor)进行修改。
1.3.2 构造方法
默认构造方法的代码为:
/*** Constructs an empty {@code HashMap} with the default initial capacity* (16) and the default load factor (0.75).*/public HashMap() {this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted}
DEFAULT_LOAD_FACTOR为 0.75 0.75 0.75。可以看到,并没有给threshold赋值,threshold赋值后移到第一次put中,给定的值是DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY=0.75*16=12。
还有一个构造函数,HashMap(int initialCapacity, float loadFactor)。
public HashMap(int initialCapacity, float loadFactor) {if (initialCapacity < 0)throw new IllegalArgumentException("Illegal initial capacity: " +initialCapacity);if (initialCapacity > MAXIMUM_CAPACITY)initialCapacity = MAXIMUM_CAPACITY;if (loadFactor <= 0 || Float.isNaN(loadFactor))throw new IllegalArgumentException("Illegal load factor: " +loadFactor);this.loadFactor = loadFactor;this.threshold = tableSizeFor(initialCapacity);}
从上述代码中,可以知道,loadFactor给定多少,就是多少,threshold值调用了tableSizeFor函数,代码如下:
/*** Returns a power of two size for the given target capacity.*/static final int tableSizeFor(int cap) {int n = -1 >>> Integer.numberOfLeadingZeros(cap - 1);return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;}
tableSizeFor返回一个大于且最接近给定cap 2 2 2的幂次方数,什么意思呢?比如:
| cap | 幂次方数 | tableSizeFor返回值 |
|---|---|---|
| 7 | 2 3 = 8 2^3=8 23=8 | 8 |
| 8 | 2 3 = 8 2^3=8 23=8 | 8 |
| 9 | 2 4 = 16 2^4=16 24=16 | 16 |
| 10 | 2 4 = 16 2^4=16 24=16 | 16 |
对于 7 7 7,最接近 2 2 2的幂次方数为 8 8 8,指数为 3 3 3。
1.3.3 保存键值对
下面,我们来看HashMap是如何把一个键值对保存起来的,代码如下所示:
public V put(K key, V value) {return putVal(hash(key), key, value, false, true);}
执行putVal之前,调用了hash方法,计算key的hash值,代码如下:
/*** Computes key.hashCode() and spreads (XORs) higher bits of hash* to lower. Because the table uses power-of-two masking, sets of* hashes that vary only in bits above the current mask will* always collide. (Among known examples are sets of Float keys* holding consecutive whole numbers in small tables.) So we* apply a transform that spreads the impact of higher bits* downward. There is a tradeoff between speed, utility, and* quality of bit-spreading. Because many common sets of hashes* are already reasonably distributed (so don't benefit from* spreading), and because we use trees to handle large sets of* collisions in bins, we just XOR some shifted bits in the* cheapest possible way to reduce systematic lossage, as well as* to incorporate impact of the highest bits that would otherwise* never be used in index calculations because of table bounds.*/static final int hash(Object key) {int h;return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);}
这里需要注意的是,key是支持为null的,当为null时,计算的hash值为 0 0 0,将会被存储在HashMap的第一个位置上(即Table数组的第一个位置上)。
调用内部函数putVal的代码如下所示:
/*** Implements Map.put and related methods.** @param hash hash for key* @param key the key* @param value the value to put* @param onlyIfAbsent if true, don't change existing value* @param evict if false, the table is in creation mode.* @return previous value, or null if none*/final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {Node<K,V>[] tab; Node<K,V> p; int n, i;if ((tab = table) == null || (n = tab.length) == 0)n = (tab = resize()).length;if ((p = tab[i = (n - 1) & hash]) == null)tab[i] = newNode(hash, key, value, null);else {Node<K,V> e; K k;if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k))))e = p;else if (p instanceof TreeNode)e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);else {for (int binCount = 0; ; ++binCount) {if ((e = p.next) == null) {p.next = newNode(hash, key, value, null);if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1sttreeifyBin(tab, hash);break;}if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))break;p = e;}}if (e != null) { // existing mapping for keyV oldValue = e.value;if (!onlyIfAbsent || oldValue == null)e.value = value;afterNodeAccess(e);return oldValue;}}++modCount;if (++size > threshold)resize();afterNodeInsertion(evict);return null;}
如果是第一次保存,首先调用resize方法给table分配实际的空间:
/*** Initializes or doubles table size. If null, allocates in* accord with initial capacity target held in field threshold.* Otherwise, because we are using power-of-two expansion, the* elements from each bin must either stay at same index, or move* with a power of two offset in the new table.** @return the table*/final Node<K,V>[] resize() {Node<K,V>[] oldTab = table;int oldCap = (oldTab == null) ? 0 : oldTab.length;int oldThr = threshold;int newCap, newThr = 0;if (oldCap > 0) {if (oldCap >= MAXIMUM_CAPACITY) {threshold = Integer.MAX_VALUE;return oldTab;}else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&oldCap >= DEFAULT_INITIAL_CAPACITY)newThr = oldThr << 1; // double threshold}else if (oldThr > 0) // initial capacity was placed in thresholdnewCap = oldThr;else { // zero initial threshold signifies using defaultsnewCap = DEFAULT_INITIAL_CAPACITY;newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);}if (newThr == 0) {float ft = (float)newCap * loadFactor;newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?(int)ft : Integer.MAX_VALUE);}threshold = newThr;@SuppressWarnings({"rawtypes","unchecked"})Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];table = newTab;if (oldTab != null) {for (int j = 0; j < oldCap; ++j) {Node<K,V> e;if ((e = oldTab[j]) != null) {oldTab[j] = null;if (e.next == null)newTab[e.hash & (newCap - 1)] = e;else if (e instanceof TreeNode)((TreeNode<K,V>)e).split(this, newTab, j, oldCap);else { // preserve orderNode<K,V> loHead = null, loTail = null;Node<K,V> hiHead = null, hiTail = null;Node<K,V> next;do {next = e.next;if ((e.hash & oldCap) == 0) {if (loTail == null)loHead = e;elseloTail.next = e;loTail = e;}else {if (hiTail == null)hiHead = e;elsehiTail.next = e;hiTail = e;}} while ((e = next) != null);if (loTail != null) {loTail.next = null;newTab[j] = loHead;}if (hiTail != null) {hiTail.next = null;newTab[j + oldCap] = hiHead;}}}}}return newTab;}
默认情况下,capacity的值为 16 16 16,threshold会变为 12 12 12,table会分配一个长度为 16 16 16的Node数组。
接下来,计算i = (n - 1) & hash,计算应该将这个键值对放到table的哪个位置。HashMap中,length为 2 2 2的幂次方, (n - 1) & hash等同于求模运算h%length。找到了保存位置i,table[i]指向一个单向链表。接下来,就是在这个链表中逐个查找是否已经有这个键了,遍历代码为:
for (int binCount = 0; ; ++binCount) {if ((e = p.next) == null) {p.next = newNode(hash, key, value, null);if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1sttreeifyBin(tab, hash);break;}if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))break;p = e;}
比较的时候,是先比较hash值,hash相同的时候,再比较key或者使用equals方法进行比较,代码为:
if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))
为什么要先比较hash呢?因为hash是整数,比较的性能一般要比equals高很多,hash不同,就没有必要调用equals方法了,这样整体上可以提高比较性能。如果能找到,直接修改Node中的value即可。modCount++的含义与ArrayList和LinkedList中介绍一样,为记录修改次数,方便在迭代中检测结构性变化。如果没找到,则调用newNode方法在给定的位置添加一条,代码如下所示:
p.next = newNode(hash, key, value, null)
我们发现,在添加后,会检查一下binCount >= TREEIFY_THRESHOLD - 1,如果成立,那么会调用treeifyBin(tab, hash),这是何意呢?首先看下treeifyBin(tab, hash)代码,如下所示:
/*** Replaces all linked nodes in bin at index for given hash unless* table is too small, in which case resizes instead.*/final void treeifyBin(Node<K,V>[] tab, int hash) {int n, index; Node<K,V> e;if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)resize();else if ((e = tab[index = (n - 1) & hash]) != null) {TreeNode<K,V> hd = null, tl = null;do {TreeNode<K,V> p = replacementTreeNode(e, null);if (tl == null)hd = p;else {p.prev = tl;tl.next = p;}tl = p;} while ((e = e.next) != null);if ((tab[index] = hd) != null)hd.treeify(tab);}}
当链表上节点的数量超过MIN_TREEIFY_CAPACITY=64时,hash表中的链表就会转为红黑树结构,以增加查找效率。
在putVal函数增加键值对之后,会调用resize()函数,函数代码如下所示:
/*** Initializes or doubles table size. If null, allocates in* accord with initial capacity target held in field threshold.* Otherwise, because we are using power-of-two expansion, the* elements from each bin must either stay at same index, or move* with a power of two offset in the new table.** @return the table*/final Node<K,V>[] resize() {Node<K,V>[] oldTab = table;int oldCap = (oldTab == null) ? 0 : oldTab.length;int oldThr = threshold;int newCap, newThr = 0;if (oldCap > 0) {if (oldCap >= MAXIMUM_CAPACITY) {threshold = Integer.MAX_VALUE;return oldTab;}else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&oldCap >= DEFAULT_INITIAL_CAPACITY)newThr = oldThr << 1; // double threshold}else if (oldThr > 0) // initial capacity was placed in thresholdnewCap = oldThr;else { // zero initial threshold signifies using defaultsnewCap = DEFAULT_INITIAL_CAPACITY;newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);}if (newThr == 0) {float ft = (float)newCap * loadFactor;newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?(int)ft : Integer.MAX_VALUE);}threshold = newThr;@SuppressWarnings({"rawtypes","unchecked"})Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];table = newTab;if (oldTab != null) {for (int j = 0; j < oldCap; ++j) {Node<K,V> e;if ((e = oldTab[j]) != null) {oldTab[j] = null;if (e.next == null)newTab[e.hash & (newCap - 1)] = e;else if (e instanceof TreeNode)((TreeNode<K,V>)e).split(this, newTab, j, oldCap);else { // preserve orderNode<K,V> loHead = null, loTail = null;Node<K,V> hiHead = null, hiTail = null;Node<K,V> next;do {next = e.next;if ((e.hash & oldCap) == 0) {if (loTail == null)loHead = e;elseloTail.next = e;loTail = e;}else {if (hiTail == null)hiHead = e;elsehiTail.next = e;hiTail = e;}} while ((e = next) != null);if (loTail != null) {loTail.next = null;newTab[j] = loHead;}if (hiTail != null) {hiTail.next = null;newTab[j + oldCap] = hiHead;}}}}}return newTab;}
如果空间不够,即size已经要超过阈值threshold了,并且对应的table位置已经插入过对象了,分配一个容量为原来两倍的Node数组,并将将原来的键值对移植过来。
1.3.4 查找方法
根据键获取值的get方法的代码为:
public V get(Object key) {Node<K,V> e;return (e = getNode(key)) == null ? null : e.value;}
调用了getNode(Object key)函数,代码如下所示:
/*** Implements Map.get and related methods.** @param key the key* @return the node, or null if none*/final Node<K,V> getNode(Object key) {Node<K,V>[] tab; Node<K,V> first, e; int n, hash; K k;if ((tab = table) != null && (n = tab.length) > 0 &&(first = tab[(n - 1) & (hash = hash(key))]) != null) {if (first.hash == hash && // always check first node((k = first.key) == key || (key != null && key.equals(k))))return first;if ((e = first.next) != null) {if (first instanceof TreeNode)return ((TreeNode<K,V>)first).getTreeNode(hash, key);do {if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))return e;} while ((e = e.next) != null);}}return null;}
getNode处理的逻辑如下:
-
判断
table不为null且数组长度大于零并且数组第一个元素不为null,否则直接返回null,在计算第一个元素时计算了key的hash值,代码为:if ((tab = table) != null && (n = tab.length) > 0 &&(first = tab[(n - 1) & (hash = hash(key))]) != null) -
检查第一个节点是否是目标,如果是则返回,代码为:
if (first.hash == hash && // always check first node((k = first.key) == key || (key != null && key.equals(k))))return first; -
判断第一个节点是链表节点还是树节点,如果是树节点则走树的查找代码,否则按照顺序遍历;链表剩余的节点,直到找到为止:
if ((e = first.next) != null) {if (first instanceof TreeNode)return ((TreeNode<K,V>)first).getTreeNode(hash, key);do {if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))return e;} while ((e = e.next) != null);}
1.3.5 根据键删除键值对
根据键删除键值对的代码为:
/*** Removes the mapping for the specified key from this map if present.** @param key key whose mapping is to be removed from the map* @return the previous value associated with {@code key}, or* {@code null} if there was no mapping for {@code key}.* (A {@code null} return can also indicate that the map* previously associated {@code null} with {@code key}.)*/public V remove(Object key) {Node<K,V> e;return (e = removeNode(hash(key), key, null, false, true)) == null ?null : e.value;}
removeNode的代码为:
/*** Implements Map.remove and related methods.** @param hash hash for key* @param key the key* @param value the value to match if matchValue, else ignored* @param matchValue if true only remove if value is equal* @param movable if false do not move other nodes while removing* @return the node, or null if none*/final Node<K,V> removeNode(int hash, Object key, Object value,boolean matchValue, boolean movable) {Node<K,V>[] tab; Node<K,V> p; int n, index;if ((tab = table) != null && (n = tab.length) > 0 &&(p = tab[index = (n - 1) & hash]) != null) {Node<K,V> node = null, e; K k; V v;if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k))))node = p;else if ((e = p.next) != null) {if (p instanceof TreeNode)node = ((TreeNode<K,V>)p).getTreeNode(hash, key);else {do {if (e.hash == hash &&((k = e.key) == key ||(key != null && key.equals(k)))) {node = e;break;}p = e;} while ((e = e.next) != null);}}if (node != null && (!matchValue || (v = node.value) == value ||(value != null && value.equals(v)))) {if (node instanceof TreeNode)((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);else if (node == p)tab[index] = node.next;elsep.next = node.next;++modCount;--size;afterNodeRemoval(node);return node;}}return null;}
基本逻辑分析如下。
-
判断
table不为null且数组长度大于零并且数组第一个元素不为null,否则直接返回null,代码为:if ((tab = table) != null && (n = tab.length) > 0 &&(p = tab[index = (n - 1) & hash]) != null) -
判断第一个节点是否是目标节点,如果是则j记录查找节点,代码为:
if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k))))node = p; -
判断第一个节点是链表节点还是树节点,如果是树节点则走树的查找代码,如果是链表,则顺序遍历,直到找到为止:
else if ((e = p.next) != null) {if (p instanceof TreeNode)node = ((TreeNode<K,V>)p).getTreeNode(hash, key);else {do {if (e.hash == hash &&((k = e.key) == key ||(key != null && key.equals(k)))) {node = e;break;}p = e;} while ((e = e.next) != null);}} -
删除找到的节点:
if (node != null && (!matchValue || (v = node.value) == value ||(value != null && value.equals(v)))) {if (node instanceof TreeNode)((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);else if (node == p)tab[index] = node.next;elsep.next = node.next;++modCount;--size;afterNodeRemoval(node);return node;}
1.4 小结
HashMap内部有一个哈希表,即数组table,每个元素table[i]指向一个单向链表或红黑树,根据键存取值,用键算出hash值,取模得到数组中的索引位置buketIndex,然后操作table[buketIndex]指向的单向链表。存取的时候依据键的hash值,只在对应的链表中操作,不会访问别的链表,在对应链表操作时也是先比较hash值,如果相同再用equals方法比较。这就要求,相同的对象其hashCode返回值必须相同,如果键是自定义的类,就特别需要注意这一点。这也是hashCode和equals方法的一个关键约束。需要说明的是,Java 8对HashMap的实现进行了优化,在哈希冲突比较严重的情况下,即大量元素映射到同一个链表的情况下(具体是至少 8 8 8个元素,且总的键值对个数至少是 64 64 64),Java 8会将该链表转换为一个红黑树,以提高查询的效率。
HashMap实现了Map接口,可以方便地按照键存取值,内部使用数组链表和哈希的方式进行实现,这决定了它有如下特点:
- 根据键保存和获取值的效率都很高,为 O ( 1 ) O(1) O(1),每个单向链表往往只有一个或少数几个节点,根据
hash值就可以直接快速定位; HashMap中的键值对没有顺序,因为hash值是随机的。
如果经常需要根据键存取值,而且不要求顺序,那么HashMap就是理想的选择。如果要保持添加的顺序,可以使用HashMap的一个子类LinkedHashMap。Map还有一个重要的实现类TreeMap,它可以排序。需要说明的是,HashMap不是线程安全的,Java中还有一个类Hashtable,它是Java最早实现的容器类之一,实现了Map接口,实现原理与HashMap类似,但没有特别的优化,它内部通过synchronized实现了线程安全。在HashMap中,键和值都可以为null,而在Hashtable中不可以。在不需要并发安全的场景中,推荐使用HashMap。在高并发的场景中,推荐使用ConcurrentHashMap。
马俊昌.Java编程的逻辑[M].北京:机械工业出版社,2018. ↩︎
尚硅谷教育.剑指Java:核心原理与应用实践[M].北京:电子工业出版社,2023. ↩︎