目录
效果
模型信息
项目
代码
数据集
下载
C# OpenVINO Crack Seg 裂缝分割 裂缝检测
效果



模型信息
Model Properties
 -------------------------
 date:2024-02-29T16:35:48.364242
 author:Ultralytics
 task:segment
 version:8.1.18
 stride:32
 batch:1
 imgsz:[640, 640]
 names:{0: 'crack'}
 ---------------------------------------------------------------
Inputs
 -------------------------
 name:images
 tensor:Float[1, 3, 640, 640]
 ---------------------------------------------------------------
Outputs
 -------------------------
 name:output0
 tensor:Float[1, 37, 8400]
 name:output1
 tensor:Float[1, 32, 160, 160]
 ---------------------------------------------------------------
项目

代码
using OpenCvSharp;
 using Sdcb.OpenVINO;
 using Sdcb.OpenVINO.Natives;
 using System;
 using System.Collections.Generic;
 using System.Diagnostics;
 using System.Drawing;
 using System.IO;
 using System.Text;
 using System.Windows.Forms;
namespace OpenVINO_Seg
 {
     public partial class Form1 : Form
     {
         public Form1()
         {
             InitializeComponent();
         }
        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
         string image_path = "";
         string startupPath;
         string model_path;
         string classer_path;
Mat src;
        SegmentationResult result_pro;
         Mat result_image;
         Result seg_result;
StringBuilder sb = new StringBuilder();
        float[] det_result_array = new float[8400 * 37];
         float[] proto_result_array = new float[32 * 160 * 160];
        // 识别结果类型
         public string[] class_names;
        private void button1_Click(object sender, EventArgs e)
         {
             OpenFileDialog ofd = new OpenFileDialog();
             ofd.Filter = fileFilter;
             if (ofd.ShowDialog() != DialogResult.OK) return;
             pictureBox1.Image = null;
             image_path = ofd.FileName;
             pictureBox1.Image = new Bitmap(image_path);
             textBox1.Text = "";
             src = new Mat(image_path);
             pictureBox2.Image = null;
         }
        unsafe private void button2_Click(object sender, EventArgs e)
         {
             if (pictureBox1.Image == null)
             {
                 return;
             }
            pictureBox2.Image = null;
             textBox1.Text = "";
             sb.Clear();
src = new Mat(image_path);
            Model rawModel = OVCore.Shared.ReadModel(model_path);
             PrePostProcessor pp = rawModel.CreatePrePostProcessor();
             PreProcessInputInfo inputInfo = pp.Inputs.Primary;
            inputInfo.TensorInfo.Layout = Sdcb.OpenVINO.Layout.NHWC;
             inputInfo.ModelInfo.Layout = Sdcb.OpenVINO.Layout.NCHW;
            Model m = pp.BuildModel();
             CompiledModel cm = OVCore.Shared.CompileModel(m, "CPU");
             InferRequest ir = cm.CreateInferRequest();
Shape inputShape = m.Inputs[0].Shape;
            float[] factors = new float[4];
             factors[0] = 1f * src.Width / inputShape[2];
             factors[1] = 1f * src.Height / inputShape[1];
             factors[2] = src.Rows;
             factors[3] = src.Cols;
result_pro = new SegmentationResult(class_names, factors,0.3f,0.5f);
            Stopwatch stopwatch = new Stopwatch();
             Mat resized = src.Resize(new OpenCvSharp.Size(inputShape[2], inputShape[1]));
             Mat f32 = new Mat();
             resized.ConvertTo(f32, MatType.CV_32FC3, 1.0 / 255);
            using (Tensor input = Tensor.FromRaw(
                  new ReadOnlySpan<byte>((void*)f32.Data, (int)((long)f32.DataEnd - (long)f32.DataStart)),
                 new Shape(1, f32.Rows, f32.Cols, 3),
                 ov_element_type_e.F32))
             {
                 ir.Inputs.Primary = input;
             }
             double preprocessTime = stopwatch.Elapsed.TotalMilliseconds;
             stopwatch.Restart();
            ir.Run();
             double inferTime = stopwatch.Elapsed.TotalMilliseconds;
             stopwatch.Restart();
            using (Tensor output_det = ir.Outputs[0])
             using (Tensor output_proto = ir.Outputs[1])
             {
                 det_result_array = output_det.GetData<float>().ToArray();
                 proto_result_array = output_proto.GetData<float>().ToArray();
seg_result = result_pro.process_result(det_result_array, proto_result_array);
                double postprocessTime = stopwatch.Elapsed.TotalMilliseconds;
                 stopwatch.Stop();
double totalTime = preprocessTime + inferTime + postprocessTime;
                result_image = src.Clone();
                 Mat masked_img = new Mat();
                // 将识别结果绘制到图片上
                 for (int i = 0; i < seg_result.length; i++)
                 {
                     Cv2.Rectangle(result_image, seg_result.rects[i], new Scalar(0, 0, 255), 2, LineTypes.Link8);
                     Cv2.Rectangle(result_image, new OpenCvSharp.Point(seg_result.rects[i].TopLeft.X, seg_result.rects[i].TopLeft.Y - 20),
                         new OpenCvSharp.Point(seg_result.rects[i].BottomRight.X, seg_result.rects[i].TopLeft.Y), new Scalar(0, 255, 255), -1);
                     Cv2.PutText(result_image, seg_result.classes[i] + "-" + seg_result.scores[i].ToString("0.00"),
                         new OpenCvSharp.Point(seg_result.rects[i].X, seg_result.rects[i].Y - 5),
                         HersheyFonts.HersheySimplex, 0.6, new Scalar(0, 0, 0), 1);
                     Cv2.AddWeighted(result_image, 0.5, seg_result.masks[i], 0.5, 0, masked_img);
                    sb.AppendLine($"{seg_result.classes[i]}:{seg_result.scores[i]:P0}");
                 }
                if (seg_result.length > 0)
                 {
                     if (pictureBox2.Image != null)
                     {
                         pictureBox2.Image.Dispose();
                     }
                     pictureBox2.Image = new Bitmap(masked_img.ToMemoryStream());
                     sb.AppendLine($"Preprocess: {preprocessTime:F2}ms");
                     sb.AppendLine($"Infer: {inferTime:F2}ms");
                     sb.AppendLine($"Postprocess: {postprocessTime:F2}ms");
                     sb.AppendLine($"Total: {totalTime:F2}ms");
                     textBox1.Text = sb.ToString();
                 }
                 else
                 {
                     textBox1.Text = "无信息";
                 }
                masked_img.Dispose();
                 result_image.Dispose();
             }
         }
        private void Form1_Load(object sender, EventArgs e)
         {
             image_path = "1.jpg";
             pictureBox1.Image = new Bitmap(image_path);
startupPath = Application.StartupPath;
            model_path = startupPath + "\\crack_m_best.onnx";
             classer_path = startupPath + "\\lable.txt";
            List<string> str = new List<string>();
             StreamReader sr = new StreamReader(classer_path);
             string line;
             while ((line = sr.ReadLine()) != null)
             {
                 str.Add(line);
             }
             class_names = str.ToArray();
        }
     }
 }
using OpenCvSharp;
using Sdcb.OpenVINO;
using Sdcb.OpenVINO.Natives;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Drawing;
using System.IO;
using System.Text;
using System.Windows.Forms;namespace OpenVINO_Seg
{public partial class Form1 : Form{public Form1(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";string startupPath;string model_path;string classer_path;Mat src;SegmentationResult result_pro;Mat result_image;Result seg_result;StringBuilder sb = new StringBuilder();float[] det_result_array = new float[8400 * 37];float[] proto_result_array = new float[32 * 160 * 160];// 识别结果类型public string[] class_names;private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);textBox1.Text = "";src = new Mat(image_path);pictureBox2.Image = null;}unsafe private void button2_Click(object sender, EventArgs e){if (pictureBox1.Image == null){return;}pictureBox2.Image = null;textBox1.Text = "";sb.Clear();src = new Mat(image_path);Model rawModel = OVCore.Shared.ReadModel(model_path);PrePostProcessor pp = rawModel.CreatePrePostProcessor();PreProcessInputInfo inputInfo = pp.Inputs.Primary;inputInfo.TensorInfo.Layout = Sdcb.OpenVINO.Layout.NHWC;inputInfo.ModelInfo.Layout = Sdcb.OpenVINO.Layout.NCHW;Model m = pp.BuildModel();CompiledModel cm = OVCore.Shared.CompileModel(m, "CPU");InferRequest ir = cm.CreateInferRequest();Shape inputShape = m.Inputs[0].Shape;float[] factors = new float[4];factors[0] = 1f * src.Width / inputShape[2];factors[1] = 1f * src.Height / inputShape[1];factors[2] = src.Rows;factors[3] = src.Cols;result_pro = new SegmentationResult(class_names, factors,0.3f,0.5f);Stopwatch stopwatch = new Stopwatch();Mat resized = src.Resize(new OpenCvSharp.Size(inputShape[2], inputShape[1]));Mat f32 = new Mat();resized.ConvertTo(f32, MatType.CV_32FC3, 1.0 / 255);using (Tensor input = Tensor.FromRaw(new ReadOnlySpan<byte>((void*)f32.Data, (int)((long)f32.DataEnd - (long)f32.DataStart)),new Shape(1, f32.Rows, f32.Cols, 3),ov_element_type_e.F32)){ir.Inputs.Primary = input;}double preprocessTime = stopwatch.Elapsed.TotalMilliseconds;stopwatch.Restart();ir.Run();double inferTime = stopwatch.Elapsed.TotalMilliseconds;stopwatch.Restart();using (Tensor output_det = ir.Outputs[0])using (Tensor output_proto = ir.Outputs[1]){det_result_array = output_det.GetData<float>().ToArray();proto_result_array = output_proto.GetData<float>().ToArray();seg_result = result_pro.process_result(det_result_array, proto_result_array);double postprocessTime = stopwatch.Elapsed.TotalMilliseconds;stopwatch.Stop();double totalTime = preprocessTime + inferTime + postprocessTime;result_image = src.Clone();Mat masked_img = new Mat();// 将识别结果绘制到图片上for (int i = 0; i < seg_result.length; i++){Cv2.Rectangle(result_image, seg_result.rects[i], new Scalar(0, 0, 255), 2, LineTypes.Link8);Cv2.Rectangle(result_image, new OpenCvSharp.Point(seg_result.rects[i].TopLeft.X, seg_result.rects[i].TopLeft.Y - 20),new OpenCvSharp.Point(seg_result.rects[i].BottomRight.X, seg_result.rects[i].TopLeft.Y), new Scalar(0, 255, 255), -1);Cv2.PutText(result_image, seg_result.classes[i] + "-" + seg_result.scores[i].ToString("0.00"),new OpenCvSharp.Point(seg_result.rects[i].X, seg_result.rects[i].Y - 5),HersheyFonts.HersheySimplex, 0.6, new Scalar(0, 0, 0), 1);Cv2.AddWeighted(result_image, 0.5, seg_result.masks[i], 0.5, 0, masked_img);sb.AppendLine($"{seg_result.classes[i]}:{seg_result.scores[i]:P0}");}if (seg_result.length > 0){if (pictureBox2.Image != null){pictureBox2.Image.Dispose();}pictureBox2.Image = new Bitmap(masked_img.ToMemoryStream());sb.AppendLine($"Preprocess: {preprocessTime:F2}ms");sb.AppendLine($"Infer: {inferTime:F2}ms");sb.AppendLine($"Postprocess: {postprocessTime:F2}ms");sb.AppendLine($"Total: {totalTime:F2}ms");textBox1.Text = sb.ToString();}else{textBox1.Text = "无信息";}masked_img.Dispose();result_image.Dispose();}}private void Form1_Load(object sender, EventArgs e){image_path = "1.jpg";pictureBox1.Image = new Bitmap(image_path);startupPath = Application.StartupPath;model_path = startupPath + "\\crack_m_best.onnx";classer_path = startupPath + "\\lable.txt";List<string> str = new List<string>();StreamReader sr = new StreamReader(classer_path);string line;while ((line = sr.ReadLine()) != null){str.Add(line);}class_names = str.ToArray();}}
}
数据集

下载
裂纹数据集带标注信息下载
源码下载