insert api的数据结构
一个完整的insert例子:
import numpy as np
from pymilvus import (connections,FieldSchema, CollectionSchema, DataType,Collection,
)num_entities, dim = 10, 3print("start connecting to Milvus")
connections.connect("default", host="192.168.230.71", port="19530")fields = [FieldSchema(name="pk", dtype=DataType.INT64, is_primary=True, auto_id=True),FieldSchema(name="book_id", dtype=DataType.INT64),FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim)
]schema = CollectionSchema(fields, "hello_milvus is the simplest demo to introduce the APIs")print("Create collection `hello_milvus`")
hello_milvus = Collection("hello_milvus", schema, consistency_level="Eventually",shards_num=1)print("Start inserting entities")
rng = np.random.default_rng(seed=19530)
entities = [[i for i in range(num_entities)],  # field book_idrng.random((num_entities, dim)),    # field embeddings
]insert_result = hello_milvus.insert(entities)hello_milvus.flush()
InsertRequest数据结构:
type InsertRequest struct {Base                 *commonpb.MsgBaseDbName               stringCollectionName       stringPartitionName        stringFieldsData           []*schemapb.FieldDataHashKeys             []uint32NumRows              uint32XXX_NoUnkeyedLiteral struct{}XXX_unrecognized     []byteXXX_sizecache        int32
}
FieldsData是一个数组,如果insert有3列,则数组长度为3,按照插入顺序。
FieldData数据结构:
type FieldData struct {Type      DataType FieldName string   // Types that are valid to be assigned to Field:////	*FieldData_Scalars//	*FieldData_VectorsField                isFieldData_FieldFieldId              int64IsDynamic            boolXXX_NoUnkeyedLiteral struct{}XXX_unrecognized     []byteXXX_sizecache        int32
}
isFieldData_Field是一个接口:
type isFieldData_Field interface {isFieldData_Field()
}
它有2个实现:FieldData_Scalars和FieldData_Vectors。
type FieldData_Scalars struct {Scalars *ScalarField
}type FieldData_Vectors struct {Vectors *VectorField
}
FieldData_Scalars存储标量数据,FieldData_Vectors存储向量数据。
ScalarField数据结构:
type ScalarField struct {// Types that are valid to be assigned to Data:////	*ScalarField_BoolData//	*ScalarField_IntData//	*ScalarField_LongData//	*ScalarField_FloatData//	*ScalarField_DoubleData//	*ScalarField_StringData//	*ScalarField_BytesData//	*ScalarField_ArrayData//	*ScalarField_JsonDataData                 isScalarField_DataXXX_NoUnkeyedLiteral struct{}XXX_unrecognized     []byteXXX_sizecache        int32
}
isScalarField_Data是一个接口。
type isScalarField_Data interface {isScalarField_Data()
}
isScalarField_Data的实现有9个:
- ScalarField_BoolData
- ScalarField_IntData
- ScalarField_LongData
- ScalarField_FloatData
- ScalarField_DoubleData
- ScalarField_StringData
- ScalarField_BytesData
- ScalarField_ArrayData
- ScalarField_JsonData
以ScalarField_LongData为例:
type ScalarField_LongData struct {LongData *LongArray
}type LongArray struct {Data                 []int64XXX_NoUnkeyedLiteral struct{}XXX_unrecognized     []byteXXX_sizecache        int32
}
VectorField数据结构:
type VectorField struct {Dim int64// Types that are valid to be assigned to Data:////	*VectorField_FloatVector//	*VectorField_BinaryVector//	*VectorField_Float16VectorData                 isVectorField_DataXXX_NoUnkeyedLiteral struct{}XXX_unrecognized     []byteXXX_sizecache        int32
}
isVectorField_Data是一个接口。
type isVectorField_Data interface {isVectorField_Data()
}
isVectorField_Data有3种实现:
- VectorField_FloatVector
- VectorField_BinaryVector
- VectorField_Float16Vector
以VectorField_FloatVector为例:
type VectorField_FloatVector struct {FloatVector *FloatArray
}type FloatArray struct {Data                 []float32XXX_NoUnkeyedLiteral struct{}XXX_unrecognized     []byteXXX_sizecache        int32
}
案例
向hello_milvus插入10个3维向量。
num_entities, dim = 10, 3
rng = np.random.default_rng(seed=19530)
entities = [[i for i in range(num_entities)],rng.random((num_entities, dim)), 
]
insert_result = hello_milvus.insert(entities)


FloatVector是一个长度为30的float32数组,插入的是10个3维向量,1个向量是3个float32,在这里展开了。