深入理解联邦学习——联邦学习的分类:基础知识

分类目录:《深入理解联邦学习》总目录


在实际中,孤岛数据具有不同分布特点,根据这些特点,我们可以提出相对应的联邦学习方案。下面,我们将以孤岛数据的分布特点为依据对联邦学习进行分类。

考虑有多个数据拥有方,每个数据拥有方各自所持有的数据集 D i D_i Di可以用一个矩阵来表示。矩阵的每一行代表一个用户,每一列代表一种用户特征。同时,某些数据集可能还包含标签数据。如果要对用户行为建立预测模型,就必须要有标签数据。我们可以把用户特征叫做 X X X,把标签特征叫做 Y Y Y。比如,在金融领域,用户的信用是需要被预测的标签 Y Y Y;在营销领域,标签是用户的购买愿望 Y Y Y;在教育领域,则是学生掌握知识的程度等。用户特征 X X X加标签 Y Y Y构成了完整的训练数据 ( X , Y ) (X, Y) (X,Y)。但是,在现实中,往往会遇到这样的情况:各个数据集的用户不完全相同,或用户特征不完全相同。具体而言,以包含两个数据拥有方的联邦学习为例,数据分布可以分为以下三种情况:

  • 两个数据集的用户特征 ( X 1 , X 2 , ⋯ ) (X_1, X_2, \cdots) (X1,X2,)重叠部分较大,而用户 ( U 1 , U 2 , ⋯ ) (U_1, U_2, \cdots) (U1,U2,)重叠部分较小
  • 两个数据集的用户 ( U 1 , U 2 , ⋯ ) (U_1, U_2, \cdots) (U1,U2,)重叠部分较大,而用户特征 ( X 1 , X 2 , ⋯ ) (X_1, X_2, \cdots) (X1,X2,)重叠部分较小
  • 两个数据集的用户 ( U 1 , U 2 , ⋯ ) (U_1, U_2, \cdots) (U1,U2,)与用户特征重叠 ( X 1 , X 2 , ⋯ ) (X_1, X_2, \cdots) (X1,X2,)部分都比较小。

为了应对以上三种数据分布情况,我们把联邦学习分为横向联邦学习、纵向联邦学习与联邦迁移学习,如下图所示:
联邦学习的分类

横向联邦学习

在两个数据集的用户特征重叠较多而用户重叠较少的情况下,我们把数据集按照横向(即用户维度)切分,并取出双方用户特征相同而用户不完全相同的那部分数据进行训练。这种方法叫做横向联邦学习。比如有两家不同地区银行,它们的用户群体分别来自各自所在的地区,相互的交集很小。但是,它们的业务很相似,因此,记录的用户特征是相同的。此时,就可以使用横向联邦学习来构建联合模型。GoogIe在2017年提出了一个针对安卓手机模型更新的数据联合建模方案:在单个用户使用安卓手机时,不断在本地更新模型参数并将参数上传到安卓云上,从而使特征维度相同的各数据拥有方建立联合模型的一种联邦学习方案。

纵向联邦学习

在两个数据集的用户重叠较多而用户特征重叠较少的情况下,我们把数据集按照纵向(即特征维度)切分,并取出双方用户相同而用户特征不完全相同的那部分数据进行训练。这种方法叫做纵向联邦学习。比如有两个不同机构,一家是某地的银行,另一家是同一个地方的电商。它们的用户群体很有可能包含该地的大部分居民,因此用户的交集较大。但是,由于银行记录的都是用户的收支行为与信用评级,而电商则保有用户的浏览与购买历史,因此它们的用户特征交集较小。纵向联邦学习就是将这些不同特征在加密的状态下加以聚合,以增强模型能力的联邦学习。目前,逻辑回归模型,树型结构模型和神经网络模型等众多机器学习模型已经逐渐被证实能够建立在这个联邦体系上。

联邦迁移学习

在两个数据集的用户与用户特征重叠都较少的情况下,我们不对数据进行切分,而可以利用迁移学习来克服数据或标签不足的情况,这种方法叫作联邦迁移学习。比如有两个不同机构,一家是位于中国的银行,另一家是位于美国的电商。由于受到地域限制,这两家机构的用户群体交集很小。同时,由于枳构类型的不同,二者的数据特征也只有小部分重合。在这种情况下,要想进行有效的联邦学习,就必须引入迁移学习,来解决单边数据规模小和标签样本少的问题,从而提升模型的效果。

参考文献:
[1] 杨强, 刘洋, 程勇, 康焱, 陈天健, 于涵. 联邦学习[M]. 电子工业出版社, 2020
[2] 微众银行, FedAI. 联邦学习白皮书V2.0. 腾讯研究院等, 2021

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/67588.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Go学习[合集]

文章目录 Go学习-Day1Go学习-Day2标识符变量基础语法字符串类型类型转换string和其他基本类型转换其他类型转stringstring转其他类型 指针类型运算符标准IO分支语句 Go学习-Day3循环语句函数声明init函数匿名函数闭包defer Go学习-Day4函数值传递,引用传递常用的函数…

Kotlin的遍历方法

for循环 在下面代码中1…10表示的是1到10,两边都是闭包,输出12345678910 for (i in 1..10) println(i)加上花括号也支持 for (i: Int in 1..10) {println(i)}另外,当对整数进行for循环时,Kotlin还提供了一个step函数来定义迭代的…

利用python制作AI图片优化工具

将模糊图片4K高清化效果如下: 优化前的图片 优化后如下图: 优化后图片变大变清晰了效果很明显 软件界面如下: 所用工具和代码: 1、所需软件包 网盘链接:https://pan.baidu.com/s/1CMvn4Y7edDTR4COfu4FviA提取码&…

【SpringMVC】工作流程及入门案例

目录 前言 回顾MVC三层架构 1. SpringMVC简介 …

Nginx安装及配置负载均衡

文章目录 官网下载Nginx解压安装常用命令配置负载均衡七层负载均衡nginx的负载均衡语法nginx的负载均衡策略故障下线和备份服务设置proxy_pass参数 官网下载Nginx http://nginx.org/en/download.html 注:下载稳定版,即Stateable Version的,…

《智能网联汽车自动驾驶功能测试规程》

一、 编制背景 2018 年4 月12 日,工业和信息化部、公安部、交通运输部联合发布《智能网联汽车道路测试管理规范(试行)》(以下简称《管理规范》),对智能网联汽车道路测试申请、审核、管理以及测试主体、测试驾驶人和测试车辆要求等…

【Kafka】ZooKeeper启动失败报错java.net.BindException: Address already in use: bind

问题描述 Kafka 2.8.1 ZooKeeper启动失败。 zookeeper-server-start.bat ../../config/zookeeper.properties[2023-09-04 18:21:49,497] INFO binding to port 0.0.0.0/0.0.0.0:2181 (org.apache.zookeeper.server.NIOServerCnxnFactory) [2023-09-04 18:21:49,498] ERROR Un…

船舶稳定性和静水力计算——绘图体平面图,静水力,GZ计算(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

Qt鼠标点击事件处理:显示鼠标点击位置(完整示例)

Qt 入门实战教程(目录) 前驱文章: Qt Creator 创建 Qt 默认窗口程序(推荐) 什么是事件 事件是对各种应用程序需要知道的由应用程序内部或者外部产生的事情或者动作的通称。 事件(event)驱动…

RHCA之路---EX280(4)

RHCA之路—EX280(4) 1. 题目 Use the S2I functionality of your OpenShift instance to build an application in the rome project Use the Git repository at http://services.lab.example.com/php-helloworld for the application source Use the Docker image labeled re…

java八股文面试[数据库]——mysql主从复制

什么是mysql的主从复制? MySQL 主从复制是指数据可以从一个MySQL数据库服务器主节点复制到一个或多个从节点。MySQL 默认采用异步复制方式,这样从节点不用一直访问主服务器来更新自己的数据,数据的更新可以在远程连接上进行,从节点…

[系统安全] 五十三.DataCon竞赛 (2)2022年DataCon涉网分析之恶意样本IOC自动化提取数据集详解

您可能之前看到过我写的类似文章,为什么还要重复撰写呢?只是想更好地帮助初学者了解病毒逆向分析和系统安全,更加成体系且不破坏之前的系列。因此,我重新开设了这个专栏,准备系统整理和深入学习系统安全、逆向分析和恶意代码检测,“系统安全”系列文章会更加聚焦,更加系…

力扣71. 简化路径

71. 简化路径 给你一个字符串 path ,表示指向某一文件或目录的 Unix 风格 绝对路径 (以 / 开头),请你将其转化为更加简洁的规范路径。 在 Unix 风格的文件系统中,一个点(.)表示当前目录本身&a…

【Spring Boot】使用MyBatis注解实现数据库操作

使用MyBatis注解实现数据库操作 MyBatis还提供了注解的方式,相比XML的方式,注解的方式更加简单方便,无须创建XML配置文件。接下来好好研究注解的使用方式。 1.XML和注解的异同 1)注解模式使用简单,开发效率高&#…

C++类和对象

文章目录 C类和对象封装类的封装性类的初识构造和析构构造和析构函数定义构造的分类以及调用深拷贝与浅拷贝初始化列表与成员对象对象成员的初始化列表 explicit 关键字动态对象的创建对象的创建new operator给基本对象申请空间给对象申请空间 静态成员静态成员变量静态成员函数…

【SpringSecurity】十一、SpringSecurity集成JWT实现token的方法与校验

文章目录 1、依赖与配置2、JWT工具类3、认证成功处理器4、创建JWT过滤器5、安全配置类 1、依赖与配置 添加JWT的maven依赖&#xff1a; <!-- 添加jwt的依赖 --> <dependency><groupId>com.auth0</groupId><artifactId>java-jwt</artifactId…

NC后端扩展开发

前言 在日常的工作中&#xff0c;会遇到各种各样的需要进行扩展开发的需求&#xff0c;可以使用系统预留的扩展开发机制来实现&#xff0c;避免修改源码。因NC产品已迭代至BIP版本&#xff0c;所以前端扩展方式就再进行不赘述了&#xff0c;本文主要介绍后端扩展开发方式&…

50个Linux常用命令行快捷键(大部分适配Mac OS)

50个Linux常用命令行快捷键 &#xff08;大部分适配Mac OS&#xff09; 移动光标到行首&#xff1a;Ctrl a移动光标到行尾&#xff1a;Ctrl e移动光标到上一个单词的开头&#xff1a;Ctrl ←移动光标到下一个单词的开头&#xff1a;Ctrl →删除光标之前的字符&#xff1a;C…

sentinel blockHandler不生效

sentinel blockHandler不生效: package org.bc.sentinel.controller;import com.alibaba.csp.sentinel.annotation.SentinelResource; import com.alibaba.csp.sentinel.slots.block.BlockException; import org.apache.commons.lang3.RandomUtils; import org.springfram…

LeetCode 47题:全排列2

题目 给定一个可包含重复数字的序列 nums &#xff0c;按任意顺序 返回所有不重复的全排列。 示例 1&#xff1a; 输入&#xff1a;nums [1,1,2] 输出&#xff1a; [[1,1,2],[1,2,1],[2,1,1]]示例 2&#xff1a; 输入&#xff1a;nums [1,2,3] 输出&#xff1a;[[1,2,3],[…