时序预测 | MATLAB实现基于CNN-GRU-AdaBoost卷积门控循环单元结合AdaBoost时间序列预测

时序预测 | MATLAB实现基于CNN-GRU-AdaBoost卷积门控循环单元结合AdaBoost时间序列预测

目录

    • 时序预测 | MATLAB实现基于CNN-GRU-AdaBoost卷积门控循环单元结合AdaBoost时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.MATLAB实现基于CNN-GRU-AdaBoost卷积门控循环单元结合AdaBoost时间序列预测(风电功率预测);
2.运行环境为Matlab2021b;
3.data为数据集,excel数据,单变量时间序列数据,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MAE、MAPE、MSE、RMSE、RPD多指标评价;

在这里插入图片描述

模型描述

CNN-GRU-AdaBoost是一种将CNN-GRU和AdaBoost两种机器学习技术结合起来使用的方法,旨在提高模型的性能和鲁棒性。具体而言,AdaBoost则是一种集成学习方法,它将多个弱学习器组合起来形成一个强学习器,其中每个学习器都是针对不同数据集和特征表示训练的。CNN-GRU-AdaBoost算法的基本思想是将CNN-GRU作为基模型,利用AdaBoost算法对其进行增强。具体而言,我们可以训练多个CNN-LSTM模型,每个模型使用不同的数据集和特征表示,然后将它们的预测结果组合起来,形成一个更准确和鲁棒的模型。

程序设计

  • 完整源码和数据获取方式资源出下载MATLAB实现基于CNN-GRU-AdaBoost卷积门控循环单元结合AdaBoost时间序列预测 。
% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
options0 = trainingOptions('adam', ...                 % 优化算法Adam'MaxEpochs', 100, ...                            % 最大训练次数'GradientThreshold', 1, ...                       % 梯度阈值'InitialLearnRate', 0.01, ...         % 初始学习率'LearnRateSchedule', 'piecewise', ...             % 学习率调整'LearnRateDropPeriod',70, ...                   % 训练100次后开始调整学习率'LearnRateDropFactor',0.01, ...                    % 学习率调整因子'L2Regularization', 0.001, ...         % 正则化参数'ExecutionEnvironment', 'cpu',...                 % 训练环境'Verbose', 1, ...                                 % 关闭优化过程'Plots', 'none');                    % 画出曲线

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/670057.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[Linux] 网络编程套接字

目录 预备知识 网络字节序 网络字节序和主机字节序转换的库函数 socket编程接口 socket常见API sockaddr结构 套接字的种类 预备知识 1.在IP数据包头部中,有两个IP地址,分别叫做源IP地址和目的IP地址。 2.端口号:是传输层协议的内容…

Flink面试准备

零. 主要内容 一. Flink 提交 1. Flink怎么提交? Local模式 JobManager 和 TaskManager 共用一个 JVM,只需要jdk支持,单节点运行,主要用来调试。 Standlone模式 Standlone 是Flink自带的一个分布式集群,它不依赖其他的资源调度框架、不依赖y…

elastic-job VS xxl-job

1、Elastic-job介绍 Elastic-job 是由当当网基于quartz 二次开发之后的分布式调度解决方案 , 由两个相对独立的子项目Elastic-Job-Lite和Elastic-Job-Cloud组成 。Elastic-Job-Lite定位为轻量级无中心化解决方案,使用jar包的形式提供分布式任务的协调服务…

爱上算法:每日算法(24-2月5号)

🌟坚持每日刷算法,😃将其变为习惯🤛让我们一起坚持吧💪 题目链接:343. 整数拆分 这道题要求一个数拆几个整数之后乘积最大。 首先就想,怎么拆呢? 可以一个数拆违两个整数&#xf…

G口大流量服务器选择的关键点有哪些?

G口服务器指的是接入互联网的带宽达到1Gbps以上的服务器,那么选择使用G口大流量服务器的用户需要注意哪些选择 关键点呢?小编为您整理关于G口大流量服务器的关键点。 G口服务器通常被用于需要大带宽支持的业务场景,比如视频流媒体、金融交易平台、电子商…

【开源】基于JAVA+Vue+SpringBoot的贫困地区人口信息管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 人口信息管理模块2.2 精准扶贫管理模块2.3 特殊群体管理模块2.4 案件信息管理模块2.5 物资补助模块 三、系统设计3.1 用例设计3.2 数据库设计3.2.1 人口表3.2.2 扶贫表3.2.3 特殊群体表3.2.4 案件表3.2.5 物资补助表 四…

Java-spring注解的作用

1.Qualifier:通常与Autowired搭配使用,通过指定具体的beanName来注入相应的bean 当容器中有多个类型相同的Bean时,可以使用Qualifier注解来指定需要注入的Bean。Qualifier注解可以用于字段、方法参数、构造函数参数等位置 Service public cl…

SM2259XT量产工具修复金泰克固态硬盘29F01T2ALCQJ1颗粒开卡

在这里插入代码片前言 网心云用的固态硬盘突然坏了识别不了,磁盘管理、diskGenius、pe系统里均无法识别,查询发现可以用开卡工具修复,遂进行了一番折腾。 拆硬盘 如图硬盘是块金泰克240g容量的,拆开后找到主控芯片型号为SM2259…

算法学习——LeetCode力扣哈希表篇1

算法学习——LeetCode力扣哈希表篇1 242. 有效的字母异位词 242. 有效的字母异位词 - 力扣(LeetCode) 描述 给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的字母异位词。 注意:若 s 和 t 中每个字符出现的次数都相同…

Spring Boot项目监控异常,发送邮件

Spring Boot项目监控异常,发送邮件 需求实现打完收工! 需求 之前博客有提到,就是需要监控程序异常,因为这个是后台运行,无法监控程序异常,所以需要监控应用异常是否出现大面积报错。 应用每天记录报错次数…

我在项目中使用Redis的几个场景

目录 缓存 会话存储 分布式锁 消息队列 位统计 计数器 排行榜 缓存 缓存的目的是为了提高系统响应速度、减少数据库等资源的压力,redis作为键值对形式的内存数 据库,可以提供非常快速的读取速度,使得它成为存储热点数据或频繁访问数…

使用PDFBox实现pdf转其他图片格式

最近在做一个小项目&#xff0c;项目中有一个功能要把pdf格式的图片转换为其它格式&#xff0c;接下来看看用pdfbox来如何实现吧。 首先导入pdfbox相关依赖&#xff1a; <dependency> <groupId>org.apache.pdfbox</groupId> <artifactId>pdfbox</a…

3、类型系统:boolean、string、number、bigint、symbol、object、undefined、null

JavaScript 语言&#xff08;注意&#xff0c;不是 TypeScript&#xff09;将值分成8种类型。 booleanstringnumberbigintsymbolobjectundefinednull TypeScript 继承了 JavaScript 的类型设计&#xff0c;以上8种类型可以看作 TypeScript 的基本类型。 注意&#xff0c;上面…

5-3、S曲线生成器【51单片机+L298N步进电机系列教程】

↑↑↑点击上方【目录】&#xff0c;查看本系列全部文章 摘要&#xff1a;本节介绍步进电机S曲线生成器的计算以及使用 一.计算原理 根据上一节内容&#xff0c;已经计算了一条任意S曲线的函数。在步进电机S曲线加减速的控制中&#xff0c;需要的S曲线如图1所示&#xff0c;横…

关于RabbitMQ常见的十道面试题

RabbitMQ是如何组成的&#xff1f;它有哪些重要的组件&#xff1f; RabbitMQ主要由以下几个重要组件组成&#xff1a; Broker&#xff1a;这是消息代理&#xff0c;主要负责接收、存储和转发消息Exchanges&#xff1a;交换器&#xff0c;它的主要作用是根据一定的规则匹配消息…

如何在Windows系统上部署docker

上次在Windows系统上部署成功Ubuntu系统&#xff0c;这次准备在Windows上部署docker desktop应用 这个应用软件类似于虚拟机&#xff0c;可以在该应用软件上部署多个镜像容器。其最直观的表现就是可以借用Windows和Ubuntu终端来访问docker“模拟的系统”。 Docker简介 Docke…

【数据结构与算法】之排序系列-20240205

这里写目录标题 一、1346. 检查整数及其两倍数是否存在二、1365. 有多少小于当前数字的数字三、1460. 通过翻转子数组使两个数组相等四、1491. 去掉最低工资和最高工资后的工资平均值五、1502. 判断能否形成等差数列 一、1346. 检查整数及其两倍数是否存在 简单 给你一个整数数…

关于RabbitMQ面试题汇总

什么是消息队列&#xff1f;消息队列有什么用&#xff1f; 消息队列是一种在应用程序之间传递消息的通信机制。它是一种典型的生产者-消费者模型&#xff0c;其中生产者负责生成消息并将其发送到队列中&#xff0c;而消费者则从队列中获取消息并进行处理。消息队列的主要目的是…

Vivado-IP核

Vivado-IP核 主程序 timescale 1ns / 1ps ////module ip_clk_wiz(input sys_clk,input sys_rst_n,output clk_out1,output clk_out2,output clk_out3,output clk_out4,output locked);clk_wiz_0 instance_name(// Clock out ports.clk_out1(clk_out1), // output clk_out…

typeof的语法和使用总结

typeof的语法和使用总结 大家好&#xff0c;我是免费搭建查券返利机器人赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01;今天&#xff0c;我们将深入探讨JavaScript中typeof操作符的语法和使用&#xff0c;帮助大家…