【Redis笔记】缓存——缓存分类、缓存穿透、缓存雪崩、缓存击穿

缓存

缓存(Cache),就是数据交换的缓冲区,俗称的缓存就是缓冲区内的数据,一般从数据库中获取,存储于高速存储媒介上。
缓存的本质就是用空间换时间,牺牲数据的实时性,以服务器内存中的数据暂时代替从数据库读取最新的数据,减少数据库IO,减轻服务器压力,减少网络延迟,加快页面打开速度。

缓存的优点及作用

降低后端负载,提高读写效率,降低响应时间。

缓存的分类

浏览器缓存

主要是存在于浏览器端的缓存

应用层缓存

使用在代码层面的Map、List、Set等进行存储,实现对数据、页面、图片等资源的缓存

数据库缓存

早期的数据库,如Oracle、MySQL、SQL server等,数据都是存放在磁盘。虽然数据库层也有对应的缓存(例如,MySQL增改查数据都会先加载到数据库中的一片空间 buffer pool),但这种缓存一般针对的是查询内容,而且粒度太小,一般只有表中数据没有变更的时候,数据库对应的缓存才发挥作用。但这并不能减少业务系统对数据库产生的增、删、查、改的庞大IO压力。
redis、mamcached、mongodb是比较常见的缓存数据库,把经常需要从数据库查询的数据、或经常更新的数据放入到缓存中,这样下次查询时,直接从缓存直接返回,减轻数据库压力。但这些缓存数据库大多在系统关机后,数据就会丢失,所以大量的数据仍需存在早期的数据库中。

CPU缓存

当代计算机最大的问题是 cpu性能提升了,但内存读写速度没有跟上,所以为了适应当下的情况,增加了cpu的L1,L2,L3级的缓存,介于CPU和内存之间。

服务器缓存

包括代理服务器缓存和CDN缓存

代理服务器缓存:代理服务器是浏览器和源服务器之间的中间服务器,浏览器先向这个中间服务器发起Web请求,经过处理后(比如权限验证,缓存匹配等),再将请求转发到源服务器。
代理服务器缓存的运作原理跟浏览器的运作原理差不多,只是规模更大。可以把它理解为一个共享缓存,不只为一个用户服务,一般为大量用户提供服务,因此在减少响应时间和带宽使用方面很有效,同一个副本会被重用多次。
CDN缓存:也叫网关缓存、反向代理缓存。CDN缓存一般是由网站管理员自己部署,为了让他们的网站更容易扩展并获得更好的性能。
浏览器先向CDN网关发起Web请求,网关服务器后面对应着一台或多台负载均衡源服务器,会根据它们的负载请求,动态将请求转发到合适的源服务器上。
虽然这种架构负载均衡源服务器之间的缓存没法共享,但却拥有更好的处扩展性。从浏览器角度来看,整个CDN就是一个源服务器。

缓存的思路

基于Redis的缓存

标准的操作方式就是查询数据库之前先查询缓存,如果缓存数据存在,则直接从缓存中返回,如果缓存数据不存在,再查询数据库,然后将数据存入redis。

更新策略

缓存更新是redis为了节约内存而设计出来的一个东西,主要是因为内存数据宝贵,当我们向redis插入太多数据,此时就可能会导致缓存中的数据过多,所以需要淘汰掉部分过期的数据。

内存淘汰:redis自动进行,当redis内存达到咱们设定的max-memery的时候,会自动触发淘汰机制,淘汰掉一些不重要的数据(可以自己设置策略方式)

超时剔除:当我们给redis设置了过期时间ttl之后,redis会将超时的数据进行删除,方便咱们继续使用缓存

主动更新:我们可以手动调用方法把缓存删掉,通常用于解决缓存和数据库不一致问题

选择哪种更新策略可以依据业务的需求来抉择。对于一致性需求低的业务,我们可以采取内存淘汰机制;对于一致性需求高的数据,应当采取主动更新的策略,并以超时剔除作为兜底。

数据库缓存不一致

缓存的数据源来自于数据库,而数据库的数据是会发生变化的,因此,如果当数据库中数据发生变化,而缓存却没有同步,此时就会有一致性问题存在

解决方案

  1. Cache Aside Pattern 人工编码方式:缓存调用者在更新完数据库后再去更新缓存,也称之为双写方案

  2. Read/Write Through Pattern : 由系统本身完成,数据库与缓存的问题交由系统本身去处理

  3. Write Behind Caching Pattern :调用者只操作缓存,其他线程去异步处理数据库,实现最终一致

对于方案一:

  • 删除缓存还是更新缓存?
    • 更新缓存:每次更新数据库都更新缓存,无效写操作较多
    • 删除缓存:更新数据库时让缓存失效,查询时再更新缓存
  • 如何保证缓存与数据库的操作的同时成功或失败?
    • 单体系统,将缓存与数据库操作放在一个事务
    • 分布式系统,利用TCC等分布式事务方案

缓存穿透

缓存穿透 :缓存穿透是指客户端请求的数据在缓存中和数据库中都不存在,这样缓存永远不会生效,这些请求都会打到数据库。

常见的解决方案有两种:

  • 缓存空对象
    • 优点:实现简单,维护方便
    • 缺点:
      • 额外的内存消耗
      • 可能造成短期的不一致
  • 布隆过滤
    • 优点:内存占用较少,没有多余key
    • 缺点:
      • 实现复杂
      • 存在误判可能

缓存空对象思路分析:当我们客户端访问不存在的数据时,先请求redis,但是此时redis中没有数据,此时会访问到数据库,但是数据库中也没有数据,这个数据穿透了缓存,直击数据库,我们都知道数据库能够承载的并发不如redis这么高,如果大量的请求同时过来访问这种不存在的数据,这些请求就都会访问到数据库,简单的解决方案就是哪怕这个数据在数据库中也不存在,我们也把这个数据存入到redis中去,这样,下次用户过来访问这个不存在的数据,那么在redis中也能找到这个数据就不会进入到缓存了

布隆过滤:布隆过滤器其实采用的是哈希思想来解决这个问题,通过一个庞大的二进制数组,走哈希思想去判断当前这个要查询的这个数据是否存在,如果布隆过滤器判断存在,则放行,这个请求会去访问redis,哪怕此时redis中的数据过期了,但是数据库中一定存在这个数据,在数据库中查询出来这个数据后,再将其放入到redis中,假设布隆过滤器判断这个数据不存在,则直接返回。

这种方式优点在于节约内存空间,存在误判,误判原因在于:布隆过滤器走的是哈希思想,只要哈希思想,就可能存在哈希冲突。

缓存雪崩

缓存雪崩是指在同一时段大量的缓存失效或者Redis等缓存服务宕机,导致大量请求到达数据库,带来巨大压力。

解决方案:

  1. 给不同的Key的TTL添加随机值,避免了因为采用相同的过期时间导致的缓存雪崩
  2. 利用Redis集群提高服务的可用性,可以使用主从架构的集群提高服务的可用性,万一出现宕机可以使用从节点顶上,避免因为一台Redis缓存服务宕机影响整个业务,提高Redis的容灾性
  3. 给缓存业务添加降级限流策略,当redis发生故障的时候可以直接拒绝服务而不是继续访问数据库
  4. 给业务添加多级缓存,在浏览器、nginx、redis、jvm、数据库等一层层的添加缓存
  5. 使用熔断机制。当流量到达一定的阈值时,就直接返回“系统拥挤”之类的提示,防止过多的请求打在数据库上。至少能保证一部分用户是可以正常使用,其他用户多刷新几次也能得到结果。

缓存击穿

缓存击穿问题也叫热点Key问题,就是一个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击。

常见的解决方案有两种:

  • 互斥锁
  • 逻辑过期

互斥锁

如果发生缓存击穿后,第一个请求查询数据库中该数据的时候,使用一个锁锁住,后续的所有请求在锁未放开之前访问这个数据就让它休眠一会重新查询缓存。缺点就是在第一个线程写缓存期间,其他访问该数据的线程拿不到锁就只能处于等待状态,影响查询的性能,因为此时会让查询的性能从并行变成了串行,我们可以采用tryLock方法 + double check来解决这样的问题。

优点:没有额外的内存消耗;保证了缓存数据库的一致性;实现比较简单
缺点:线程需要等待,性能受影响;可能有死锁风险。

逻辑过期

我们把过期时间设置在 redis的value中,注意:这个过期时间并不会直接作用于redis,而是我们后续通过逻辑去处理。
假设线程1去查询缓存,然后从value中判断出来当前的数据已经过期了,此时线程1去获得互斥锁,那么其他线程会进行阻塞,获得了锁的线程他会开启一个新开的线程2去进行 以前的重构数据的逻辑,直到新开的线程完成这个逻辑后,才释放锁, 而线程1直接进行返回,假设现在线程3过来访问,由于线程线程2持有着锁,所以线程3无法获得锁,线程3也直接返回过期的数据,只有等到新开的线程2把重建数据构建完后,其他线程才能返回更新的数据。

优点:线程无需等待
缺点:不能保证缓存数据库一致性;有额外的内存消耗;实现比较复杂。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/651884.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2401llvm,匹配器参考

返回类型名字参数Matcher<attr>attrMatcher<Attr>... 匹配属性. 属性可附加各种不同的语法(包括关键字,C11属性,GNU的__attribute和MSVC的__declspec,和#pragma等).也可能是隐含的. 给定 struct [[nodiscard]] Foo{};void bar(int * __attribute__((nonnull)) );…

一起学习ETCD系列——运维操作之etcdctl使用

文章目录 概要一、命令二、实操2.1、基本操作2.2、watch2.3、租约2.4、分布式锁2.5、角色2.6、用户2.7、认证2.8、集群 概要 本文主要用来总结ETCD客户端ctcdctl的命令操作&#xff0c;在运维过程中可能常常用到的。 一、命令 etcd工具 etcdctl官方命令示例 [roottest etcd…

【牛客刷题】笔试选择题整理(day1-day2)

每天都在进步呀 文章目录 1. 小数求模运算2. 进程的分区&#xff0c;这里说的不是JVM的分区。进程中&#xff0c;方法存放在方法区。3. 访问权限控制4. 继承与多态5. 与equals()6. 类加载顺序7. super()与this()7.1 super7.1.1 super调用父类构造方法7.1.2 super调用父类属性和…

私人漫画图书馆:分类管理,一目了然 | 开源日报 No.157

tachiyomiorg/tachiyomi Stars: 26.9k License: Apache-2.0 tachiyomi 是一个免费开源的安卓漫画阅读器。 该项目的主要功能、关键特性、核心优势包括&#xff1a; 从多种来源在线阅读本地阅读已下载内容可配置的阅读器&#xff0c;具有多个查看器、翻页方向和其他设置支持追…

大数据处理系统的架构

大数据处理系统的架构介绍 Lamdba架构 Lambda 架构是一种用于处理大规模数据的设计模式,旨在结合批处理和实时处理,以应对对大量数据进行高效处理的需求。Lambda 架构的核心思想是将数据处理流程分为批处理层和实时处理层,并将它们整合在一起,以获得高可扩展性和灵活性。…

什么叫高斯分布?

高斯分布&#xff0c;也称为正态分布&#xff0c;是统计学中最常见的概率分布之一。它具有钟形曲线的形态&#xff0c;对称分布在均值周围&#xff0c;且由均值和标准差两个参数完全描述。 高斯分布的概率密度函数&#xff08;Probability Density Function, PDF&#xff09;可…

mysql数据库的备份和恢复

登录&#xff1a; mysql -uroot -proot -h127.0.0.1 退出&#xff1a; mysql > exit; mysql > quit; mysql > \q;备份所有数据库 mysqldump命令备份所有数据库的语法如下&#xff1a; mysqldump -u username -p -all-databases > BackupName.sql 示例&#xf…

SpringBoot 有什么优点?

Spring Boot 是一个用于简化和加速 Spring 框架应用程序开发的项目。它构建在 Spring 框架之上&#xff0c;提供了一种快速开发、简化配置和集成的方式。以下是 Spring Boot 的一些优点&#xff1a; 1、简化配置&#xff1a; Spring Boot 使用约定大于配置的理念&#xff0c;通…

[设计模式Java实现附plantuml源码~创建型] 复杂对象的组装与创建——建造者模式

前言&#xff1a; 为什么之前写过Golang 版的设计模式&#xff0c;还在重新写Java 版&#xff1f; 答&#xff1a;因为对于我而言&#xff0c;当然也希望对正在学习的大伙有帮助。Java作为一门纯面向对象的语言&#xff0c;更适合用于学习设计模式。 为什么类图要附上uml 因为很…

DevOps系列文章之 GitLabCI汇总

GitlabCI环境搭建 前提 先安装 docker Docker容器化安装 docker pull gitlab/gitlab-ee:12.4.0-ee.0 创建挂载目录 mkdir -p /srv/gitlab mkdir -p /srv/gitlab/config # 映射到 Glitlab 容器中的配置目录 mkdir -p /srv/gitlab/logs # 映射到 Glitlab 容器中的日志目录 m…

mac裁剪图片

今天第一次用mac裁剪图片&#xff0c;记录一下过程&#xff0c;差点我还以为我要下载photoshop了&#xff0c; 首先准备好图片 裁剪的目的是把图片的标题给去掉&#xff0c;但是不能降低分辨率&#xff0c;否则直接截图就可以了 解决办法 打开原始图片(不要使用预览&#xf…

Python环境下基于机器学习的NASA涡轮风扇发动机剩余使用寿命RUL预测

本例所用的数据集为C-MAPSS数据集&#xff0c;C-MAPSS数据集是美国NASA发布的涡轮风扇发动机数据集&#xff0c;其中包含不同工作条件和故障模式下涡轮风扇发动机多源性能的退化数据&#xff0c;共有 4 个子数据集&#xff0c;每个子集又可分为训练集、 测试集和RUL标签。其中&…

【开源】基于JAVA语言的二手车交易系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 二手车档案管理模块2.3 车辆预约管理模块2.4 车辆预定管理模块2.5 车辆留言板管理模块2.6 车辆资讯管理模块 三、系统设计3.1 E-R图设计3.2 可行性分析3.2.1 技术可行性分析3.2.2 操作可行性3.2.3 经济…

Java入门——数据类型、自动类型转换、强制类型转换

目录 数据类型 基本数据类型 自动类型转换 表达式的自动类型转换 强制类型转换 计算机中表示数据的最小单元 计算机中表示数据的最小单元&#xff1a;一个字节&#xff08;byte&#xff0c;简称B&#xff0c;是使用8个二进制位组成的&#xff09;字节中的每个二进制位就称…

Python进阶第一篇(Python的面向对象)

文章目录 一、初识对象1.案例代码2.读出结果 二、类的成员方法三、类和对象四、构造方法六、其他内置方法1.魔术方法案例代码2.读出结果 七、封装1.封装案例代码2.读出结果 八、继承1.复写与调用2.类型注解 九、多态 在这个探索和学习的旅程中&#xff0c;我们将深入理解一些编…

基于DataKit迁移MySQL到openGauss

&#x1f4e2;&#x1f4e2;&#x1f4e2;&#x1f4e3;&#x1f4e3;&#x1f4e3; 哈喽&#xff01;大家好&#xff0c;我是【IT邦德】&#xff0c;江湖人称jeames007&#xff0c;10余年DBA及大数据工作经验 一位上进心十足的【大数据领域博主】&#xff01;&#x1f61c;&am…

网络防御保护——防火墙子接口配置

一.实验拓扑图 二.实验要求 1.生产区在工作时间内可以访问服务区&#xff0c;仅可以访问http服务器。 2.办公区全天可以访问服务区&#xff0c;其中&#xff0c;10.0.2.20可以访问FTP服务器和HTTP服务器&#xff0c;10.0.2.10仅可以ping通10.0.3.10。 3.办公区在访问服务区时采…

【软件测试】学习笔记-Nginx 在系统架构中的作用

本篇文章你探讨 Nginx 在应用架构中的作用&#xff0c;并从性能测试角度看如何利用 Nginx 数据统计用户访问量。 Nginx 重要的两个概念 代理 首先要来解释一下什么是代理&#xff0c;正向代理和反向代理是什么意思&#xff1f;各自作用是什么&#xff1f;不少同学经常听到这…

WPF中的工具栏ToolBar控件

ToolBar&#xff08;工具栏&#xff09;是WPF中的一个控件&#xff0c;用于在界面上创建一个水平或垂直的工具栏&#xff0c;以便放置和组织多个按钮或其他控件。ToolBar通常用于提供快速访问常用功能的方式&#xff0c;类似于传统桌面应用程序的工具栏。 下面是ToolBar控件的…

C语言——操作符详解2

目录 0.过渡0.1 不创建临时变量&#xff0c;交换两数0.2 求整数转成二进制后1的总数 1.单目表达式2. 逗号表达式3. 下标访问[ ]、函数调用( )3.1 下标访问[ ]3.2 函数调用( ) 4. 结构体成员访问操作符4.1 结构体4.1.1 结构体的申明4.1.2 结构体变量的定义和初始化 4.2 结构体成…