量化交易学习2(因子研究)

因子有效性检验

参考1 参考2
在多因子研究框架中,因子的有效性检验是不可避免的工作,其本质是衡量一个因子的选股能力
目前学术界和业界普遍使用的两种方法:

相关性检验
因子的相关性检验即检验单因子和收益率之间是否存在相关性

IC值
计算同一时刻的个股的指标值和未来一段时间(通常为一个月)收益的相关性,也就是IC值(信息系数)。

IC∈[−1,1]

绝对值越大,预测能力越好。IC 值介于 -1 和 1 之间,反映出因子对下期收益率的预测能力,IC 值越高,该因子在该期对股票收益的预测能力越强。当 IC 为 1 时,表示该因子选出来的股票,分数最高的股票在下个调仓周期中涨幅最大。若一个因子的 IC 值 >0.05,则可以视为有效因子,IC 值 >0.1 时, 就可以认为因子是特别好的阿尔法因子;当 IC 均值接近 0,可视为无效因子
Normal IC:又称为皮尔逊相关系数,给定股票池,t-1 期的因子暴露和 t 期的因子收益之间的截面相关系数。
在这里插入图片描述

Rank IC:又称为斯皮尔曼相关系数,给定股票池,t-1 期的因子暴露的排序值和 t 期的因子收益的排序值之间的截面相关系数。
在这里插入图片描述
追踪有效因子,规避非有效因子
一个 beta 因子被评估为有效后,将被越来越多人熟知并应用,这将让它在市场中越来越有效,意在获取 alpha 收益的投资者也在此基础上去挖掘更多 alpha 因子,进一步评估因子在实践中获取的风险溢价能力。如今,学术界已经挖出了超过 400 个因子,这背后不免部分存在错误定价(股价偏离内在价值)和数据窥探(样本内过拟合,因子在样本外明显失效)等的嫌疑,可能会混淆因子风险溢价的范围。学术界发表的因子并非完全可用于投资,正如上篇文章讲到,因子暴露和可投资性不可兼得,实际投资时需要更多地考虑做空限制等。目前投资领域中常见的有价值因子、质量因子、低波动因子等。
在这里插入图片描述
一个因子被验证为有效,是某历史时间段内的数据所呈现出来的规律,并无法代表它在未来的市场中也一定会按照该规律发展。以上只是众多检验方式中较常来评估选股效果的方法,其他的方法还有 t 值评估、换手率分析等。这些评估方法也应当避免因子在样本内过拟合,否则将导致样本外失效的风险。

有效因子可以让收益变得明朗,而正确识别非有效因子也是一项重要工作。在检验错误定价因子时,可以观察到在投资组合构建后的一段时间内,其累计收益会持续上升,说明这是一个价格发现的过程,睿智的投资者在其中的某些时点可以通过套利操作获得短期收益,但随着因子逐渐被曝光,错误定价效应也逐渐减弱甚至消失。对于通过数据窥探获得的“虚假”因子,考虑用样本外的新数据去对因子进行再次检验,有效识别“样本外失效”的因子,躲开过拟合,有利于在样本外摒弃它们,防止在实际投资中遭受损失。对于无效因子,则考虑做好规避工作。

在实盘中,通过因子应该选多少股票、仓位是多少、调仓频率如何、适应怎样的市场条件等问题是因子投资能否成功的关键。此外,投资者情绪也会影响到市场表现,短期内的“因子有效”背后可能是投资者情绪的干扰。投资策略没有标准答案,对于难以捉摸的市场,我们应该时刻跟踪因子在实际投资中的表现,重视因子的作用范围和时效,注意因子失效。

多个单因子之间存在相关性
一个 alpha 因子被市场熟知、变得有效之后,就会变成 beta 因子被用于资产定价,解释投资组合收益。但解释投资组合收益只有一个因子是不充分的,因为其收益受到多个因素影响,是多个因子作用的结果,这就需要多个因子作为选股标准。多个因子之间会产生复杂的互动效应,称为“相关性”,单纯地用多个因子叠加所进行的测试结果可能会有误差。单因子的表现与多因子模型之间并非机械的 “1+1=2” 关系,一个单因子单独测试表现不好,但放在多因子模型中可能也会发挥出它的作用,一个检验效果好的因子放在多因子模型中却也可能表现差强人意。因此,构建一个多因子模型时需要考虑因子之间的联动,多做测试,这样才能更好地选因子和选资产,进而提高整个多因子模型的收益。
注:Alpha和Beta是认识市场的起点。Alpha:投资组合的超额收益,表现管理者的能力;Beta:市场风险,最初主要指股票市场的系统性风险或收益。换句话说,跑赢大盘的就叫Alpha,跟着大盘起伏就叫Beta。

Python多因子选股策略实践

多因子选股模型是一个用来选择股票投资组合的策略,它考虑了多个与预期收益相关的因子。这种模型的理念基于这样的理论:单一因子可能无法全面捕捉到市场的所有变化,而多个因子的组合可以提供更全面、更稳定的预测。

多因子选股模型的核心思想是通过多个因子的组合来选择股票,因子可以通过历史数据来计算,然后用来预测未来的股票表现,以期获取更全面、更稳定的预测。这些因子可以包括基本面因子、技术分析因子、宏观经济因子等。例如:

基本面因子:包括市盈率(PE)、市净率(PB)、营业收入增长率等
技术分析因子:包括动量(Momentum)、波动率(Volatility)等
宏观经济因子:包括利率、通货膨胀率等
在实现多因子选股模型时,需要进行以下步骤:

确定目标和约束条件

明确多因子模型要达到的投资目标收益率、风险水平等要求。同时考虑实际的投资约束,例如组合数目限制、行业比例限制等。

选择因子并计算

根据目标和约束条件,选择合适的股票因子,如PE, PB等。收集数据计算得到每只股票的各因子值。

异常值处理

检查数据中的异常值和错报数据,进行处理和滤除,保证因子值的质量。

因子标准化

因为不同因子的取值范围差异很大,需要进行标准化处理,例如去均值和缩放等。

确定因子权重

根据因子的重要性给予不同权重,通常通过统计方法比如主成分分析来确定。

构建多因子模型

结合因子值和权重,建立多因子评分模型,得到各股票的综合评分。

股票筛选和组合优化

根据评分进行股票筛选,并进行组合优化,获得符合目标和约束条件的优化组合。

回测和调整模型

使用历史数据回测多因子模型的效果,根据结果进行调整和改进。

以下是一个使用Python实现一个简单的多因子选股模型的基本示例:

mport pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split# 读取和准备数据
df = pd.read_csv('stock_data.csv')
X = df[['PE', 'PB', 'ROE']] # 特征因子
y = df['Returns'] # 目标变量# 拆分训练数据和测试数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 标准化处理
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)# 构建线性回归模型
model = LinearRegression()
model.fit(X_train, y_train)# 查看模型系数,确定因子权重
print('Factor weights:', model.coef_)# 使用模型预测测试数据的收益
y_pred = model.predict(X_test)# 创建一个DataFrame来存储股票的预测收益
predicted_returns = pd.DataFrame({'Stock': X_test.index,'Predicted return': y_pred
})# 根据预测的收益选择股票
selected_stocks = predicted_returns[predicted_returns['Predicted return'] > 0.1]print('Selected stocks:', selected_stocks)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/649511.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

20240126请问在ubuntu20.04.6下让GTX1080显卡让whisper工作在large模式下?

20240126请问在ubuntu20.04.6下让GTX1080显卡让whisper工作在large模式下? 2024/1/26 21:19 问GTX1080模式使用large该如何配置呢? 这个问题没有完成,可能需要使用使用显存更大的显卡了! 比如GTX1080Ti 11GB,更猛的可…

C++(Qt)软件调试---静态分析工具clang-tidy(18)

C(Qt)软件调试—静态分析工具clang-tidy(18) 文章目录 C(Qt)软件调试---静态分析工具clang-tidy(18)1、概述2、clang-tidy基本用法3、目前已有检查项4、Qt Creator中安装clang-tidy5、Qt Creator中使用clang-tidy6、Clang-Tidy配置…

HTML5 服务器发送事件(Server-Sent Events)

前言: 文章内容参考: HTML5 服务器发送事件(Server-Sent Events) | 菜鸟教程 microsoft/fetch-event-source - npm event-source-polyfill - npm 正文: HTML5服务器发送事件(server-sent event)允许网页获得来自服务器…

websocket 通信协议

websocket是什么 答: 它是一种网络通信协议,是 HTML5 开始提供的一种在单个 TCP 连接上进行全双工通讯的协议。 意思就是服务器可以主动向客户端推送信息,客户端也可以主动向服务器发送信息 属于服务器推送技术的一种. 为什么需要websocket? 疑问?…

Windows Server Nginx 反向代理Spring Boot配置无效 404 未找到

一个Spring Boot的系统,开发完成发布到Windows服务器里,使用nginx作为反向代理,修改刷新配置文件,nginx.conf,总是报错404。 这个是不生效刷新配置文件的bat脚本: REM 切换到NGINX安装目录 cd D:\nginx-1.…

修复WordPress内部服务器错误的步骤及解决方案

WordPress是一款广泛使用的开源内容管理系统,但在使用过程中,可能会遇到各种内部服务器错误。这些错误可能由于多种原因引起,例如插件冲突、文件权限问题、服务器配置不当等。为了帮助您快速解决这些问题,本文将为您提供一套详细的…

数据结构排序算详解(动态图+代码描述)

目录 1、直接插入排序(升序) 2、希尔排序(升序) 3、选择排序(升序) 方式一(一个指针) 方式二(两个指针) 4、堆排序(升序) 5、冒…

Golang协程池ants使用笔记

最近工程中遇到goroutine滥用导致的bug,采用了ants协程池来解决。 github-ants官方源码和使用说明。 记录一个例子 package mainimport ("fmt""runtime""github.com/panjf2000/ants/v2" )// 模拟一个任务:求数字x的平方 …

代码随想录算法训练营数组总结

一、理论基础 定义:数组是存放在连续内存空间上的相同类型数据的集合。 注意事项: ①数组下标从0开始。 ②数组元素不能删除,只能覆盖。 ③二维数组的地址空间不一定是连续的。 二、方法总结 1.二分法 思想:设置left、right指针&a…

equence to Sequence Learning with Neural Networks 导读

本文介绍了一种基于深度神经网络(DNN)的序列到序列学习方法,该方法使用多层长短时记忆网络(LSTM)将输入序列映射为固定维度向量,并使用另一个深LSTM解码目标序列。在英语到法语翻译任务上,该方法…

QtRVSim(二)一个 RISC-V 程序的解码流程

继上一篇文章简单代码分析后,本文主要调研如何实现对指令的解析运行。 调试配置 使用 gdb 工具跟踪调试运行。 c_cpp_properties.json 项目配置: {"name": "QtRvSim","includePath": ["${workspaceFolder}/**&quo…

【微调大模型】如何利用开源大模型,微调出一个自己大模型

在人工智能的浪潮中,深度学习已经成为了最炙手可热的技术。其中,预训练大模型如Transformer、BERT等,凭借其强大的表示能力和泛化能力,在自然语言处理、计算机视觉等多个领域取得了显著的成功。然而,这些预训练大模型往往需要巨大的计算资源和时间成本,对于一般的研究者或…

Spring5系列学习文章分享---第五篇(事务概念+特性+案例+注解声明式事务管理+参数详解 )

目录 事务事务概念什么是事务事务四个特性(ACID) 搭建事务操作环境Spring 事务管理介绍注解声明式事务管理声明式事务管理参数配置XML 声明式事务管理事务操作(完全注解声明式事务管理)感谢阅读 开篇: 欢迎再次来到 Spring 5 学习…

Lowest Common Ancestor

模板 1. Tarjan 一个讲的很好的视频:D10 Tarjan算法 P3379【模板】最近公共祖先(LCA)_哔哩哔哩_bilibili,董晓算法出品。 Tarjan总体来说可以概括为: 记录访达:记录某个节点是否已经访问过,防…

3. MATLAB中Plot绘制放大特定的区域

在MATLAB中,我们经常需要绘制图形并进行一些自定义的操作。在本示例中,我们将演示如何在MATLAB中绘制一个图形,并通过放大某个特定的区域来突出显示。 ## 原始图形 首先,我们绘制了一个包含正弦和余弦函数的图形。 % MATLAB 代…

RabbitMQ 笔记二

1.Spring 整合RabbitMQ 生产者消费者 创建生产者工程添加依赖配置整合编写代码发送消息 创建消费者工程添加依赖配置整合编写消息监听器 2.创建工程RabbitMQ Producers spring-rabbitmq-producers <?xml version"1.0" encoding"UTF-8"?> <pr…

【计算机图形学】实验五 一个简单的交互式绘图系统(实验报告分析+截图+源码)

可以先看一看这篇呀~【计算机图形学】专栏前言-CSDN博客https://blog.csdn.net/m0_55931547/article/details/135863062 目录 一、实验目的 二、实验内容

77 C++对象模型探索。虚函数- 从静态联编,动态联编出发,分析 虚函数调用问题探究

什么叫做单纯的类&#xff1a; 比较简单的类&#xff0c;尤其不包括 虚函数 和虚基类。 什么叫不单纯的类&#xff1a; 从上一章的学习我们知道&#xff0c;在某些情况下&#xff0c;编译器会往类内部增加一些我们看不见但是真实存在的成员变量&#xff0c;例如vptr&#xff…

unitary MUSIC 算法

unitary MUSIC 算法 论文 A Unitary Transformation Method for Angle-of-Arrival Estimation 中提出了 unitary MUSIC 的算法&#xff0c;直译就是酉 MUSIC 算法&#xff0c;即酉变换 MUSIC 算法。该算法的目的是简化计算复杂度&#xff0c;将传统 MUSIC 算法中的复数 SVD 和复…

【shell-10】shell实现的各种kafka脚本

kafka-shell工具 背景日志 log一.启动kafka->(start-kafka)二.停止kafka->(stop-kafka)三.创建topic->(create-topic)四.删除topic->(delete-topic)五.获取topic列表->(list-topic)六. 将文件数据 录入到kafka->(file-to-kafka)七.将kafka数据 下载到文件-&g…