PyTorch深度学习遥感影像地物分类与目标检测、分割及遥感影像问题深度学习优化实践技术应用

我国高分辨率对地观测系统重大专项已全面启动,高空间、高光谱、高时间分辨率和宽地面覆盖于一体的全球天空地一体化立体对地观测网逐步形成,将成为保障国家安全的基础性和战略性资源。未来10年全球每天获取的观测数据将超过10PB,遥感大数据时代已然来临。随着小卫星星座的普及,对地观测已具备3次以上的全球覆盖能力,遥感影像也不断被更深入的应用于矿产勘探、精准农业、城市规划、林业测量、军事目标识别和灾害评估中。最近借助深度学习方法,基于卷积神经网络的遥感影像自动地物识别取得了令人印象深刻的结果。深度卷积网络采用“端对端”的特征学习,通过多层处理机制揭示隐藏于数据中的非线性特征,能够从大量训练集中自动学习全局特征(这种特征被称为“学习特征”),是其在遥感影像自动目标识别取得成功的重要原因,也标志特征模型从手工特征向学习特征转变。以PyTorch为主体的深度学习平台为使用卷积神经网络也提供程序框架。但卷积神经网络涉及到的数学模型和计算机算法都十分复杂、运行及处理难度很大,PyTorch平台的掌握也并不容易。为使广大学者能理解卷积神经网络背后的数学模型和计算机算法,掌握利用PyTorch为基础的遥感影像地物分类,遥感图像目标检测,以及遥感图像目标分割等应用。

点击查看原文链接icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=Mzg2NDYxNjMyNA==&mid=2247507396&idx=6&sn=94fdca90eec2d04b0205f64da76ff9aa&chksm=ce64372ff913be39897a32a9e4e624b73f5f6984efae7fdad3f5c4b64276b94af3ea7f9f1d9c&token=792668581&lang=zh_CN#rd

深度卷积网络知识详解

1.深度学习在遥感图像识别中的范式和问题

2.梳理深度学习的历史发展历程从中理解深度学习在遥感应用中的优缺点

3.机器学习,深度学习等任务的处理流程

4.卷积神经网络的原理及应用

5.卷积运算的原理方法

6.池化操作,全连接层,以及分类器的作用及在应用中的注意事项

7.BP反向传播算法的方法

8.CNN模型代码详解

9.特征图,卷积核可视化分析

PyTorch应用与实践(遥感图像场景分类)

1.PyTorch框架

2.动态计算图,静态计算图等机制

3.PyTorch的使用教程

4.PyTorch的学习案例

5.PyTorch的使用与API

6.PyTorch图像分类任务策略方法

案例:

1不同超参数,如初始化,学习率对结果的影响

2使用PyTorch搭建神经网络并实现遥感图像场景分类

卷积神经网络实践与遥感影像目标检测

  1. 深度学习下的遥感影像目标检测基本知识
  2. 目标检测数据集的图像和标签表示方式
  3. 讲解目标检测模型的评估方案,包括正确率,精确率,召回率,mAP等
  4. 讲解two-stage(二阶)检测模型框架,RCNN, Fast RCNN, Faster RCNN等框架的演变和差异
  5. 讲解 one-stage(一阶)检测模型框架,SDD ,Yolo等系列模型现有检测模型发展小结

遥感影像目标检测任务案例

案例 1:

(1)一份完整的Faster-RCNN 模型下实现遥感影像的目标检测

(2)讲解数据集的制作过程,包括数据的存储和处理

(3)数据集标签的制作

(4)模型的搭建,组合和训练

(5)检测任数据集在验证过程中的注意事项

深度学习与遥感影像分割任务        

  1. 深度学习下的遥感影像分割任务的基本概念
  2. 讲解FCN,SegNet,U-net等模型的差异
  3. 分割模型的发展小结
  4. 遥感影像分割任务和图像分割的差异
  5. 在遥感影像分割任务中的注意事项案例
  6. 讲解数据集的准备和处理
  7. 遥感影像划分成小图像的策略
  8. 模型的构建和训练方法
  9. 验证集的使用过程中的注意事项

遥感影像问题探讨与深度学习优化技巧

  1. 现有几个优秀模型结构的演变原理,包括AlexNet,VGG,googleNet,ResNet,DenseNet等模型
  2. 从模型演变中讲解实际训练模型的技巧
  3. 讲解针对数据的优化策略
  4. 讲解针对模型的优化策略
  5. 讲解针对训练过程的优化策略
  6. 讲解针对检测任务的优化策略
  7. 讲解针对分割任务的优化策略
  8. 提供一些常用的检测,分割数据集的标注工具

  1. 学员根据科研或生产实际,集体讨论深度学习实施方案
  2. 提供若干附加材料,包括数据集,标签工具、代码以及学习材料
  3. 实例回顾、训练、巩固

答疑与讨论(大家提前把问题整理好)

原文链接icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=Mzg2NDYxNjMyNA==&mid=2247507396&idx=6&sn=94fdca90eec2d04b0205f64da76ff9aa&chksm=ce64372ff913be39897a32a9e4e624b73f5f6984efae7fdad3f5c4b64276b94af3ea7f9f1d9c&token=792668581&lang=zh_CN#rd

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/63512.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

error: unable to unlink old ‘.gitlab-ci.yml‘: Permission denied

#gitlab-runner 执行代码git pull origin xxx 更新时候报 error: unable to unlink old ‘.gitlab-ci.yml’: Permission denied 问题环境:centos 部署gitlab-runner 执行脚本方式 选的shell 产生问题的原因:gitlab-runner程序进程占用锁定了.gitlab-ci…

[c++] 指定精度格式化

1.整数指定格式 格式“%03d” ,如何把其中的03能够指定0-9之间的任何一个数呢? 方法1: 把“%03d”逐个字符进行展开,%03d --%% 0 %d d 然后整体当作格式使用, 举例: int aa 2;int nDotNum 3;CString ss1;CStr…

【unity插件】使用BehaviorDesigner插件制作BOSS的AI行为树

文章目录 前言素材插件一、基础使用二、敌人物理攻击三、敌人面向玩家四、敌人法术攻击五、随机进行攻击六、敌人不同的阶段推荐学习视频源码完结 前言 Behavior Designer是一个行为树插件,是一款为了让策划,程序员,美术人员方便使用的可视化…

再谈IOS开发环境配置(2023-09-01 新)

关于IOS的开发,需要配置证书、密钥、管理标识符、功能配置等等,很是繁杂,以前也配置过,这次因为重新购买了新的M1笔记本,准备重新配置下,顺便记录,以便查询。 如果要开发IOS,首先需要…

Midjourney学习(一)prompt的基础

prompt目录 sd和mj的比较prompt组成风格表现风格时代描述表情色彩情绪环境 sd和mj的比较 自从去年9月份开始,sd就变得非常或火,跟它一起的还有一个midjourney。 他们就像是程序界的两种模式,sd是开源的,有更多的可能性更可控。但是…

c#多线程—基础概念到“双色球”项目实现(附知识点目录、代码、视频)

总结:视频中对于多线程讲的非常透彻,从线程基础概念—>.net不同版本出现的线程方法—>多线程常出现问题—>双色球项目实践,每个知识点都有代码实操,受益匪浅。附上学习笔记和实操代码。 视频 目录 一、线程、进程概念及优…

华为数通方向HCIP-DataCom H12-821题库(拖拽题,知识点总结)

以下是我在现有题库中整理的需要重点关注的考点内容,如有遗漏小伙伴可以留言补充。

[国产MCU]-W801开发实例-通用硬件加密解密

通用硬件加密解密 文章目录 通用硬件加密解密1、W801通用加密模块介绍2、硬件加密解密使用示例2.1 硬件随机数生成2.2 RC4硬件加密解密2.3 AES硬件加密与解密2.4 DES硬件加密与解密2.5 DES3硬件加密与解密2.6 硬件CRC计算2.7 硬件MD5计算2.8 硬件SHA1加密与解密1、W801通用加密…

Linux内核源码分析 (5)多处理器调度

Linux内核源码分析 (5)多处理器调度 文章目录 Linux内核源码分析 (5)多处理器调度注:本章节使用的内核版本为Linux 5.6.18一、 SMT和NUMA1、SMP (对称多处理器结构)2、NUMA (非一致内存访问结构) 二、多核调度三、调度域和调度组四、SMP调度详…

数据结构基本概念

一、数据 数据对象-数据元素-数据项(属性),前者由后者组成 二、数据结构 定义:按某种关系的数据元素的集合 三、数据类型 1、原子类型(例如整型) 2、结构类型(由原子类型组成,例如数组) 3、…

01背包(换汤不换药)

链接:登录—专业IT笔试面试备考平台_牛客网 来源:牛客网 有一个箱子容量为V(正整数,0 ≤ V ≤ 20000),同时有n个物品(0<n ≤ 30),每个物品有一个体积&#xf…

ReID网络:MGN网络(4) - Loss计算

1. MGN Loss MGN采用三元损失(Triplet Loss)。 三元损失主要用于ReID算法,目的是帮助网络学习到一个好的Embedding信息。之所以称之为三元损失,主要原因在于在训练中,参与计算Loss的分别有Anchor、Positive和Negative三方。 2. Triplet Lo…

力扣:82. 删除排序链表中的重复元素 II(Python3)

题目: 给定一个已排序的链表的头 head , 删除原始链表中所有重复数字的节点,只留下不同的数字 。返回 已排序的链表 。 来源:力扣(LeetCode) 链接:力扣(LeetCode)官网 - …

ChatGPT插件的优缺点

虽然西弗吉尼亚大学的研究人员看到了最新的官方ChatGPT插件——名为“代码解释器”( Code Interpreter)的教育应用潜力,但他们也发现,对于使用计算方法处理针对癌症和遗传疾病的定向治疗的生物数据的科学家来说,这款插…

ABTest文章合辑

ABTest&统计学 如何理解α、β一类错误和二类错误?_紫昂张的博客-CSDN博客 如何理解P值?_紫昂张的博客-CSDN博客 如何理解原假设和备择假设?_紫昂张的博客-CSDN博客 ABTest基础概念 AB测试可以用来测什么?不能测什么&…

[C/C++]指针详讲-让你不在害怕指针

个人主页:北海 🎐CSDN新晋作者 🎉欢迎 👍点赞✍评论⭐收藏✨收录专栏:C/C🤝希望作者的文章能对你有所帮助,有不足的地方请在评论区留言指正,大家一起学习交流!&#x1f9…

.net基础概念

1. .NET Framework .NET Framework开发平台包含公共语言运行库(CLR)和基类库(BCL),前者负载管理代码的执行,后者提供了丰富的类库来构建应用程序。.NET Framework仅支持Windows平台 2. Mono 由于.NET Framework支支持windows环境,因此社区…

python中is和==的区别

is 和 的区别 在Python中,is和是两个用于比较对象的操作符,它们有不同的作用和用法。 is操作符: is用于比较两个对象的身份标识,即判断两个对象是否引用同一个内存地址的对象。当is操作符用于比较两个对象时,它会判断…

Java for循环每次都通过list.size()和 string.length()获取大小性能

有人说在for循环之前用一个局部变量先获取到list.size()、str.length(),然后在for循环的判断条件里通过这个局部变量替换list.size()、str.length()会节省数据计算的时间。事实真的是这样吗?下面就为大家解答这个问题。 说明:此文章针对Andro…

Spark Optimizer 规则详解和示例

Optimizer 是在 Analyzer 生成 Resolved Logical Plan 后,进行优化的阶段。 1. Batch Finish Analysis 有5条优化规则,这些规则都执行一次 1.1 EliminateSubqueryAliases 消除查询别名,对应逻辑算子树中的 SubqueryAlias 节点。一般来讲&…