GPM合并资料整理-GEM部分

一、性能数据上报项

1. CPU模块

上报键值说明采集平台
cpu当前进程cpu使用率平均值Android & iOS
totcpu系统cpu总使用率平均值Android & iOS
cpu_temp_maxcpu最高温度Android
cpu_temp_avgcpu温度平均值Android
gpu_temp_avggpu温度平均值Android
gpu_temp_maxgpu最高温度Android
gpugpu使用率平均值Android
gpu_modelgpu型号Android
cpu_modelcpu型号Android
cpu_corecpu核心数Android
cpu_freqcpu最大时钟频率Android

2. memory及存储模块

上报键值说明采集平台
mem当前进程内存使用量平均值Android & iOS
availmem当前设备可用内存量平均值Android & iOS
max_mem内存使用量最大值Android & iOS
start_mem开始对局时内存使用量Android & iOS
end_mem结束对局时内存使用量Android & iOS
totalmem当前设备总内存量Android & iOS
total_storage当前设备总存储空间大小Android & iOS
free_storage当前设备可用存储空间大小Android & iOS

3. 网卡模块

上报键值说明采集平台
wsndpkt无线网卡发包总数Android & iOS
wrcvpkt无线网卡收包总数Android & iOS
wsnddrop无线网卡发包丢包Android & iOS
wrcvdrop无线网卡收包丢包Android & iOS
wsnderr无线网卡发包错包Android & iOS
wrcverr无线网卡收包错包Android & iOS
msndpkt移动网卡发包总数Android & iOS
mrcvpkt移动网卡收包总数Android & iOS
msnddrop移动网卡发包丢包Android & iOS
mrcvdrop移动网卡收包丢包Android & iOS
msnderr移动网卡发包错包Android & iOS
mrcverr移动网卡收包错包Android & iOS

4. FPS模块

上报键值说明采集平台
fminfps最小值Android & iOS
fmaxfps最大值Android & iOS
favgfps平均值Android & iOS
fheavyfps严重抖动个数(本次fps值比上次fps值低10以上)Android & iOS
flightfps轻微抖动个数(本次fps值比上次fps值低4以上,10以下)Android & iOS
ftotalfps采集总个数Android & iOS
fcntx0fps自定义抖动个数(阈值由云控下发)Android & iOS
lfps1低于云控下发的lfps1阈值的个数Android & iOS
lfps2低于云控下发的lfps2阈值的个数Android & iOS
lfps3低于云控下发的lfps3阈值的个数Android & iOS

5. 电量模块

上报键值说明采集平台
battery电量消耗(开始-结束)Android & iOS
start_battery开始对局时电量值Android & iOS
end_battery结束对局时电量值Android & iOS
bs对局过程中是否有充电操作Android & iOS
bt电池温度平均值Android
max_battery_temp电池温度最大值Android

6. 网络相关模块

上报键值说明采集平台
netflow流量消耗Android & iOS
devices当前wifi下连接设备数Android & iOS
wifi_numwifi个数Android
wifi_rssi当前wifi信号强度Android
wifi_speed当前wifi链接速度Android
gate_delay到网关延迟(ping)Android & iOS
signal_level移动信号强度Android
xg当前网络类型Android & iOS
ldns本机DNS服务器Android & iOS

7. 机型相关

上报键值说明采集平台
manufacturer厂商Android
brand品牌Android
model型号Android
resolution分辨率Android

cpu&memory采集具体实现代码

1. cpu

  • Android采集代码:

      public static float totalCpuUsageRate() {return getTotalCpuUsageRate(USAGE_RATE_CAL_INTERVAL_MILLS_DEFAULT);}public static float getTotalCpuUsageRate(long calIntervalMills) {if (0 > calIntervalMills) {return VALUE_GET_FAILED;}float totalCpuUsageRate = VALUE_GET_FAILED;try {TotalCpuStatInfo totalCpuStatInfo1 = TotalCpuStatInfo.get();long cpuTotal1 = totalCpuStatInfo1.getCpuTotal();if (0 > cpuTotal1) {return totalCpuUsageRate;}long total1 = totalCpuStatInfo1.getTotal();if (0 > total1) {return totalCpuUsageRate;}try {Thread.sleep(calIntervalMills);} catch (Exception e) {GPMLogger.w(e, "getTotalCpuUsageRate failed");}TotalCpuStatInfo totalCpuStatInfo2 = TotalCpuStatInfo.get();long cpuTotal2 = totalCpuStatInfo2.getCpuTotal();if (0 > cpuTotal2) {return totalCpuUsageRate;}long total2 = totalCpuStatInfo2.getTotal();if (0 > total2) {return totalCpuUsageRate;}long totalDiff = total2 - total1;if (0 == totalDiff) {// NOTE: totalDiff为分母return totalCpuUsageRate;}long cpuTotalDiff = cpuTotal2 - cpuTotal1;return 100 * cpuTotalDiff / (totalDiff + 0f);} catch (Exception e) {GPMLogger.w(e, "getTotalCpuUsageRate failed");}return totalCpuUsageRate;}public static float myCpuUsageRate() {return getMyCpuUsageRate(USAGE_RATE_CAL_INTERVAL_MILLS_DEFAULT);}public static float getMyCpuUsageRate(long calIntervalMills) {if (0 > calIntervalMills) {return VALUE_GET_FAILED;}float myCpuUsageRate = VALUE_GET_FAILED;try {TotalCpuStatInfo totalCpuStatInfo1 = TotalCpuStatInfo.get();long total1 = totalCpuStatInfo1.getTotal();if (0 > total1) {return myCpuUsageRate;}MyCpuStatInfo myCpuStatInfo1 = MyCpuStatInfo.get();long myCpuTotal1 = myCpuStatInfo1.getCpuTotal();if (0 > myCpuTotal1) {return myCpuUsageRate;}try {Thread.sleep(calIntervalMills);} catch (Exception e) {GPMLogger.w(e, "getMyCpuUsageRate failed");}TotalCpuStatInfo totalCpuStatInfo2 = TotalCpuStatInfo.get();long total2 = totalCpuStatInfo2.getTotal();if (0 > total2) {return myCpuUsageRate;}MyCpuStatInfo myCpuStatInfo2 = MyCpuStatInfo.get();long myCpuTotal2 = myCpuStatInfo2.getCpuTotal();if (0 > myCpuTotal2) {return myCpuUsageRate;}long totalDiff = total2 - total1;if (0 == totalDiff) {// NOTE: totalDiff为分母return myCpuUsageRate;}long myCpuTotalDiff = myCpuTotal2 - myCpuTotal1;return 100 * myCpuTotalDiff / (totalDiff + 0f);} catch (Exception e) {GPMLogger.w(e, "getTotalCpuUsageRate failed");}return myCpuUsageRate;}private static class TotalCpuStatInfo {private static final int MIN_CPU_STAT_ITEM_NUM = 9;private static final String[] INVALID_RAW_CPU_STAT_ITEMS =new String[MIN_CPU_STAT_ITEM_NUM];public final long user;public final long nice;public final long system;public final long idle;public final long iowait;public final long irq;public final long softirq;public static TotalCpuStatInfo get() {BufferedReader cpuStatInfoReader = null;try {cpuStatInfoReader = new BufferedReader(new InputStreamReader(new FileInputStream(STAT_ABS_DIR), UTF8_CHARSET));return new TotalCpuStatInfo(cpuStatInfoReader.readLine());} catch (Exception e) {// NOTE: 高版本上获取不到, 不打印堆栈GPMLogger.d("get total cpu stat info failed");return new TotalCpuStatInfo(null);} finally {if (null != cpuStatInfoReader) {try {cpuStatInfoReader.close();} catch (IOException ignored) {}}}}private TotalCpuStatInfo(String cpuStatLine) {String[] rawCpuStatItems = CpuStatInfoHelper.buildRawCpuStatItems(cpuStatLine, MIN_CPU_STAT_ITEM_NUM, INVALID_RAW_CPU_STAT_ITEMS);user = CpuStatInfoHelper.buildCpuStatItem(rawCpuStatItems[2]);nice = CpuStatInfoHelper.buildCpuStatItem(rawCpuStatItems[3]);system = CpuStatInfoHelper.buildCpuStatItem(rawCpuStatItems[4]);idle = CpuStatInfoHelper.buildCpuStatItem(rawCpuStatItems[5]);iowait = CpuStatInfoHelper.buildCpuStatItem(rawCpuStatItems[6]);irq = CpuStatInfoHelper.buildCpuStatItem(rawCpuStatItems[7]);softirq = CpuStatInfoHelper.buildCpuStatItem(rawCpuStatItems[8]);}public long getCpuTotal() {return user + nice + system + iowait + irq + softirq;}public long getTotal() {return user + nice + system + idle + iowait + irq + softirq;}}private static class MyCpuStatInfo {private static final int MIN_CPU_STAT_ITEM_NUM = 17;private static final String[] INVALID_RAW_CPU_STAT_ITEMS = new String[MIN_CPU_STAT_ITEM_NUM];public final long utime;public final long stime;public final long cutime;public final long cstime;public static MyCpuStatInfo get() {BufferedReader cpuStatInfoReader = null;try {cpuStatInfoReader = new BufferedReader(new InputStreamReader(new FileInputStream(MY_STAT_ABS_DIR), UTF8_CHARSET));return new MyCpuStatInfo(cpuStatInfoReader.readLine());} catch (Exception e) {GPMLogger.w(e, "get my cpu stat info failed");return new MyCpuStatInfo(null);} finally {if (null != cpuStatInfoReader) {try {cpuStatInfoReader.close();} catch (IOException ignored) {}}}}private MyCpuStatInfo(String cpuStatLine) {String[] rawCpuStatItems = CpuStatInfoHelper.buildRawCpuStatItems(cpuStatLine, MIN_CPU_STAT_ITEM_NUM, INVALID_RAW_CPU_STAT_ITEMS);utime = CpuStatInfoHelper.buildCpuStatItem(rawCpuStatItems[13]);stime = CpuStatInfoHelper.buildCpuStatItem(rawCpuStatItems[14]);cutime = CpuStatInfoHelper.buildCpuStatItem(rawCpuStatItems[15]);cstime = CpuStatInfoHelper.buildCpuStatItem(rawCpuStatItems[16]);}public long getCurrentThreadCpuTotal() {return utime + stime;}public long getCpuTotal() {return utime + stime + cutime + cstime;}}
    
  • IOS采集代码:

      // ============当前进程cpu使用率============- (double) getCPU {kern_return_t kr;task_info_data_t tinfo;mach_msg_type_number_t task_info_count;task_info_count = TASK_INFO_MAX;kr = task_info(mach_task_self(), TASK_BASIC_INFO, (task_info_t)tinfo, &task_info_count);if (kr != KERN_SUCCESS) {GSDKLOG(@"================CPU:%.2f",-1.0f);return -1;}task_basic_info_t      basic_info;thread_array_t         thread_list;mach_msg_type_number_t thread_count;thread_info_data_t     thinfo;mach_msg_type_number_t thread_info_count;thread_basic_info_t basic_info_th;uint32_t stat_thread = 0; // Mach threadsbasic_info = (task_basic_info_t)tinfo;// get threads in the taskkr = task_threads(mach_task_self(), &thread_list, &thread_count);if (kr != KERN_SUCCESS) {GSDKLOG(@"=============CPU:%.2f",-1.0f);return -1;}if (thread_count > 0)stat_thread += thread_count;long tot_sec = 0;long tot_usec = 0;float tot_cpu = 0;int j;for (j = 0; j < thread_count; j++) {thread_info_count = THREAD_INFO_MAX;kr = thread_info(thread_list[j], THREAD_BASIC_INFO, (thread_info_t)thinfo, &thread_info_count);if (kr != KERN_SUCCESS) {GSDKLOG(@"=========CPU:%.2f",-1.0f);return -1;}basic_info_th = (thread_basic_info_t)thinfo;if (!(basic_info_th->flags & TH_FLAGS_IDLE)) {tot_sec = tot_sec + basic_info_th->user_time.seconds + basic_info_th->system_time.seconds;tot_usec = tot_usec + basic_info_th->system_time.microseconds + basic_info_th->system_time.microseconds;tot_cpu = tot_cpu + basic_info_th->cpu_usage / (float)TH_USAGE_SCALE * 100.0;}} // for each threadkr = vm_deallocate(mach_task_self(), (vm_offset_t)thread_list, thread_count * sizeof(thread_t));GSDKLOG(@"=============CPU:%.2f",tot_cpu);return tot_cpu;}// ============当前进程cpu使用率============processor_info_array_t cpuInfo, prevCpuInfo;mach_msg_type_number_t numCpuInfo, numPrevCpuInfo;unsigned numCPUs;NSLock * CPUUsageLock;- (void) getSystemCPU {int mib[2U] = { CTL_HW, HW_NCPU };size_t sizeOfNumCPUs = sizeof(numCPUs);int status = sysctl(mib, 2U, &numCPUs, &sizeOfNumCPUs, NULL, 0U);if (status)numCPUs = 1;CPUUsageLock = [[NSLock alloc] init];}- (double) getSystemCPUCircle {natural_t numCPUsU = 0U;kern_return_t err = host_processor_info(mach_host_self(), PROCESSOR_CPU_LOAD_INFO, &numCPUsU, &cpuInfo, &numCpuInfo);if (err == KERN_SUCCESS) {[CPUUsageLock lock];float tot_inUse = 0;float tot_total = 0;for(unsigned i = 0U; i < numCPUs; ++i) {float inUse, total;if(prevCpuInfo) {inUse = ((cpuInfo[(CPU_STATE_MAX * i) + CPU_STATE_USER] - prevCpuInfo[(CPU_STATE_MAX * i) + CPU_STATE_USER])+ (cpuInfo[(CPU_STATE_MAX * i) + CPU_STATE_SYSTEM] - prevCpuInfo[(CPU_STATE_MAX * i) + CPU_STATE_SYSTEM])+ (cpuInfo[(CPU_STATE_MAX * i) + CPU_STATE_NICE]   - prevCpuInfo[(CPU_STATE_MAX * i) + CPU_STATE_NICE]));total = inUse + (cpuInfo[(CPU_STATE_MAX * i) + CPU_STATE_IDLE] - prevCpuInfo[(CPU_STATE_MAX * i) + CPU_STATE_IDLE]);} else {inUse = cpuInfo[(CPU_STATE_MAX * i) + CPU_STATE_USER] + cpuInfo[(CPU_STATE_MAX * i) + CPU_STATE_SYSTEM] + cpuInfo[(CPU_STATE_MAX * i) + CPU_STATE_NICE];total = inUse + cpuInfo[(CPU_STATE_MAX * i) + CPU_STATE_IDLE];}tot_inUse += inUse;tot_total += total;}[CPUUsageLock unlock];if (prevCpuInfo) {size_t prevCpuInfoSize = sizeof(integer_t) * numPrevCpuInfo;vm_deallocate(mach_task_self(), (vm_address_t)prevCpuInfo, prevCpuInfoSize);}prevCpuInfo = cpuInfo;numPrevCpuInfo = numCpuInfo;cpuInfo = NULL;numCpuInfo = 0U;if (tot_total > 0) {GSDKLOG(@"CPU Usage: %.2f%%",tot_inUse/tot_total * 100.f);return tot_inUse/tot_total * 100.f;} else {return -1;}} else {GSDKLOG(@"Error!");return -1;}}
    

2. memory

  • Android采集代码:

      public static long getAvailableMemory(Context context) {if (null == context) {return VALUE_GET_FAILED;}@SuppressWarnings("AlibabaLowerCamelCaseVariableNaming")long availableMemoryInMB = VALUE_GET_FAILED;try {ActivityManager activityManager =(ActivityManager) context.getSystemService(Context.ACTIVITY_SERVICE);if (null == activityManager) {return availableMemoryInMB;}ActivityManager.MemoryInfo memoryInfo = new ActivityManager.MemoryInfo();activityManager.getMemoryInfo(memoryInfo);availableMemoryInMB = memoryInfo.availMem / (1024 * 1024);} catch (Exception e) {GPMLogger.w(e, "availableMemoryInMB failed");}return availableMemoryInMB;}// ============当前设备可用内存大小(原方案)============public static long getProcessMemery() {// TODO: 厂商反馈Debug.getPss()计算还是过于复杂,后续考虑使用Process.getPss()或者仿照Process.getPss()实现// NOTE: 当前实现应该在低优先级后台线程调用if (Build.VERSION_CODES.ICE_CREAM_SANDWICH <= Build.VERSION.SDK_INT) {return Debug.getPss() / 1024;}// NOTE: 仅在Android14下使用,不涉及私有API访问限制// Android 2.3上Process已有getPss方法// https://android.googlesource.com/platform/frameworks/base/+/refs/heads/gingerbread/core/java/android/os/Process.javatry {Method getPssMethod = Process.class.getMethod(GET_PSS_METHOD_NAME, int.class);return ((long) getPssMethod.invoke(null, Process.myPid())) / 1024;} catch (Exception e) {return VALUE_GET_FAILED;}}// ============当前设备可用内存大小(优化后方案)============private static ActivityManager sActivityMgr = null;private static int sPid = 0;public static int getProcessMemery(Context context) {try {if (sActivityMgr == null) {sActivityMgr = (ActivityManager) context.getSystemService(context.ACTIVITY_SERVICE);}if (sPid == 0) {sPid = android.os.Process.myPid();}if (sActivityMgr == null || sPid == 0) {return -1;}int[] myMempid = new int[]{sPid};Debug.MemoryInfo[] memoryInfo = sActivityMgr.getProcessMemoryInfo(myMempid);int memSize = 0;if (memoryInfo != null && memoryInfo.length > 0) {memSize = memoryInfo[0].getTotalPss();}return memSize;} catch (Exception e) {Logger.e("PSS fetch error: " + e.getMessage());}return -1;}
    
  • IOS采集代码:

      // ============当前设备可用内存大小============- (double) getSystemAvailableMemory {// 获取当前设备可用内存(单位:MB)vm_statistics_data_t vmStats;mach_msg_type_number_t infoCount = HOST_VM_INFO_COUNT;kern_return_t kernReturn = host_statistics(mach_host_self(), HOST_VM_INFO, (host_info_t)&vmStats, &infoCount);if (kernReturn != KERN_SUCCESS) {GSDKLOG(@"AvailableMemory=====%.2f",-1.0f);return -1;}double availMem = (vm_page_size * vmStats.free_count + vm_page_size * vmStats.inactive_count) / 1024.0 / 1024.0;GSDKLOG(@"AvailableMemory=====%.2f",availMem);return availMem;}// ============当前进程使用内存大小(原方案)============- (double) getFootPrint {task_vm_info_data_t vmInfo;mach_msg_type_number_t count = TASK_VM_INFO_COUNT;kern_return_t result = task_info(mach_task_self(), TASK_VM_INFO, (task_info_t) &vmInfo, &count);if (result != KERN_SUCCESS) {GSDKLOG(@"FootPrint=====%.2f",-1.0f);return -1;}GSDKLOG(@"FootPrint=====%i",(int)((vmInfo.phys_footprint) / 1024.0 / 1024.0));return vmInfo.phys_footprint / 1024.0 / 1024.0;}// ============当前进程使用内存大小(优化后方案)============- (instancetype) init {if (self = [super init]) {_isLowLevelDevice = NO;struct utsname systemInfo;uname(&systemInfo);NSString *platform = [NSString stringWithCString:systemInfo.machine encoding:NSASCIIStringEncoding];if ([platform isEqualToString:@"iPhone7,1"] || [platform isEqualToString:@"iPhone7,2"] || [platform isEqualToString:@"iPhone6,1"] || [platform isEqualToString:@"iPhone6,2"]) {_isLowLevelDevice = YES;}}return self;}- (double) getFootPrint {task_vm_info_data_t vmInfo;mach_msg_type_number_t count = TASK_VM_INFO_COUNT;kern_return_t result = task_info(mach_task_self(), TASK_VM_INFO, (task_info_t) &vmInfo, &count);if (result != KERN_SUCCESS) {GSDKLOG(@"FootPrint=====%.2f",-1.0f);return -1;}double footPrint = -1;if (_isLowLevelDevice || [UIDevice.currentDevice.systemVersion doubleValue] >= 12.0) {footPrint = vmInfo.phys_footprint / 1024.0 / 1024.0;}if ([UIDevice.currentDevice.systemVersion doubleValue] < 12.0) {footPrint = (vmInfo.internal + vmInfo.compressed - vmInfo.purgeable_volatile_pmap) / 1024.0 / 1024.0;}GSDKLOG(@"FootPrint=====%i",int((vmInfo.phys_footprint) / 1024.0 / 1024.0));return footPrint;}
    

二、性能数据统一上报类示例

使用同一个TDMReportHelper实例进行上报即可:

TDMReportHelper eventReportHandler = new TDMReportHelper(eventName);
eventReportHandler.addSS(key, value);
eventReportHandler.report();
eventReportHandler.destory();

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/613087.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

阿里云实时计算企业级状态存储引擎 Gemini 技术解读

本文整理自阿里云 Flink 存储引擎团队李晋忠&#xff0c;兰兆千&#xff0c;梅源关于阿里云实时计算企业级状态存储引擎 Gemini 的研究&#xff0c;内容主要分为以下五部分&#xff1a; 流计算状态访问的痛点企业级状态存储引擎GeminiGemini 性能评测&线上表现结语参考 一、…

2024年最新ChemiCloud优惠75%折扣WordPress外贸主机

ChemiCloud怎么样&#xff1f;ChemiCloud好不好&#xff1f;ChemiCloud是一家成立于2016年的云虚拟主机提供商&#xff0c;他们在全球范围内拥有多个机房&#xff0c;并以其出色的性价比而备受赞誉。他们整合了许多先进技术&#xff0c;包括Digital Ocean SSD云服务器、LiteSpe…

云计算任务调度仿真03

前面陆续分享了基于policy gradient和DQN实现的深度强化学习任务调度仿真&#xff0c;上次的DQN没有实现fix-qtarget和experience replay&#xff0c;这次再分享实现了这两个方法的DQN任务调度仿真。 经验重放&#xff0c;定义存储和存放次序&#xff0c;这里也可以自行修改 de…

docker容器化技术

docker容器化技术 1.docker概述 docker简单的说就是一个沙盒技术&#xff0c;主要目的是为了将应用运行在其中与外界隔离&#xff0c;方便这个沙盒可以被转移到其它宿主机器。docker虚拟化的是java app、 依赖包、环境信息、操作系统软件。先有docker后有容器化技术&#xff…

提升测试效率,轻松并行运行测试——探秘Pytest插件pytest-xdist

在软件开发中&#xff0c;测试是确保代码质量的重要一环。然而&#xff0c;随着项目规模的增大&#xff0c;测试用例的数量也随之增多&#xff0c;测试的执行时间可能成为一个瓶颈。为了解决这个问题&#xff0c;Pytest提供了丰富的插件生态系统&#xff0c;其中 pytest-xdist …

[C#]调用tesseact-ocr的traineddata模型进行ocr文字识别

【框架地址】 https://github.com/charlesw/tesseract 【算法介绍】 Tesseract OCR是一个开源的光学字符识别引擎&#xff0c;它可以将图像中的文字转换成可编辑和可搜索的文本格式。Tesseract由惠普实验室于1985年开始开发&#xff0c;并在2005年被Google收购后成为了开源项…

api网关-kong

选型 api网关相关功能 服务的路由 动态路由负载均衡 服务发现 限流 熔断、降级 流量管理 黑白名单反爬策略 控制台&#xff1a;通过清晰的UI界面对网关集群进行各项配置。 集群管理&#xff1a;Goku网关节点是无状态的&#xff0c;配置信息自动同步&#xff0c;支持节点水…

7.云原生之jenkins集成SonarQube

1. 私有云实战之基础环境搭建 2. 云原生实战之kubesphere搭建 3.云原生之kubesphere运维 4. 云原生之kubesphere基础服务搭建 5.云原生安全之kubesphere应用网关配置域名TLS证书 6.云原生之DevOps和CICD 7.云原生之jenkins集成SonarQube 8.云原生存储之Ceph集群 文章目录 搭建 …

JS 深克隆(深克隆不考虑函数)深拷贝deepClone

js封装方法实现深拷贝 1.新建名为tools.js的文件&#xff0c;添加内容&#xff1a; export const deepClone (obj, result) > { var result result || {}; for (var prop in obj) { if (obj.hasOwnProperty(prop)) { if (typeof obj[prop] object && obj[prop] …

二维0-1背包问题

题目来源&#xff1a;8. 二维费用的背包问题 - AcWing题库 题目&#xff1a; 有 N 件物品和一个容量是 V 的背包&#xff0c;背包能承受的最大重量是 M。 每件物品只能用一次。体积是 vi&#xff0c;重量是 mi&#xff0c;价值是 wi。 求解将哪些物品装入背包&#xff0c;可…

SpringSecurity 密码加密登录

SpringSecurity 密码加密登录 1.前端所需文件2.后端所用工具类3.登录代码4.灵魂一问 1.前端所需文件 import JSEncrypt from jsencrypt/bin/jsencrypt.min// 密钥对生成 http://web.chacuo.net/netrsakeypairconst publicKey MFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBAKoR8mX0rGKLqz…

BGP公认任意属性——MED(二)

BGP公认任意属性有两个&#xff0c;分别是&#xff1a;Local-preference 和 MED&#xff0c;本期介绍MED。 点赞关注&#xff0c;持续更新&#xff01;&#xff01;&#xff01; MED 特点 MED &#xff08;多出口鉴别器&#xff09;&#xff0c;也称为BGP COST&#xff0c;…

usb静电防护芯片选择

方案1 USBLC6-2SC6 优缺点 优点&#xff1a;进出使用不同的焊盘&#xff0c;如果没有焊接好信号必定不能通过。有效的避免了虚焊导致故障。 缺点&#xff1a;不能省略&#xff0c;调试时也不能省略。 原理图 参考价格 参考来源 USB切换方案&#xff0c;多电脑共用USB方案…

高级路由学习试题

文章目录 高级路由学习试题一.高级路由题目答案 二.OSPF 相关答案 三.基础知识答案 高级路由学习试题 一.高级路由题目 1.以下属于ITOIP特性的有&#xff08;&#xff09; A、智能 B、开放 C、融合 D、标准 2.层级化网络模型将网络划分为&#xff08;&#xff09; A、汇…

“掌握家庭收支,轻松规划未来,记录日常开销的利器!“

你是否经常对家庭开支感到困惑&#xff0c;不知道钱都花在哪里了&#xff1f;或者想要更好地规划家庭的财务&#xff0c;却无从下手&#xff1f;现在&#xff0c;有了我们的收支明细工具&#xff0c;这些问题都将迎刃而解&#xff01; 第一步&#xff1a;首先我们要进入晨曦记账…

Mxnet导出onnx模型

Mxnet导出onnx模型 requirements mxnet1.9.1python3.8onnxsim 导出模型 import os import mxnet as mx import numpy as np import onnx from onnx import checker from mxnet.onnx import export_model from mxnet.gluon.model_zoo import vision from onnxsim import sim…

java 常⽤的线程池模式CachedThreadPool

线程池中的线程数量是可变的。 当提交一个新任务时&#xff0c;如果线程池中的线程都在运行&#xff0c;新任务就会被放入任务队列中等待执行。 如果线程池中的所有线程都在运行&#xff0c;且任务队列已满&#xff0c;那么线程池会创建新的线程来处理新任务。 使用场景&#x…

遗传算法 (Genetic Algorithm, GA) 详解与实现

文章目录 基本思想基本概念基本操作算法基本步骤代码实现参考文献基本思想 遗传算法(Genetic Algorithm,GA)是一种进化算法,其基本原理是仿效生物界中的“物竞天择、适者生存”的演化法则,它最初由美国Michigan大学的J. Holland教授于1967年提出。 遗传算法是从代表问题…

02.构建和使用的大型语言模型(LLMs)阶段

我们为什么要建立自己的LLMs?LLM从头开始编码是了解其机制和局限性的绝佳练习。此外,它还为我们提供了必要的知识,可以保留或微调现有的开源LLM架构,以适应我们自己的特定领域的数据集或任务。 研究表明,在建模性能方面,定制(LLMs为特定任务或领域量身定制的)可以胜过…

如何在 Flutter 中使用 Tree Shaking 功能优化应用程序的性能

Tree Shaking 是 Fl​​utter 中的一项关键优化技术&#xff0c;可最大限度地减少应用程序 JavaScript 包的大小。它有助于减少应用程序的初始加载时间&#xff0c;提高运行时性能&#xff0c;并确保您的应用程序仅包含实际需要的代码。在本文中&#xff0c;我们将探讨什么是 T…