互联网加竞赛 基于大数据的社交平台数据爬虫舆情分析可视化系统

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
    • **实现功能**
    • **可视化统计**
    • **web模块界面展示**
    • 3 LDA模型
  • 4 情感分析方法
    • **预处理**
    • 特征提取
    • 特征选择
    • 分类器选择
    • 实验
  • 5 部分核心代码
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于大数据的社交平台数据爬虫舆情分析可视化系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

基于Python的社交平台大数据挖掘及其可视化。

2 实现效果

实现功能

  • 实时热点话题检测
  • 情感分析
  • 结果可视化
  • Twitter数据挖掘平台的设计与实现

可视化统计

Hashtag统计
在这里插入图片描述
地理位置信息的可视化

在这里插入图片描述

话题结果可视化

矩阵图

在这里插入图片描述
旭日图

在这里插入图片描述

情感分析的可视化

在这里插入图片描述

web模块界面展示

在这里插入图片描述

3 LDA模型

2003年,D.Blei等人提出了广受欢迎的LDA(Latentdirichlet
allocation)主题模型[8]。LDA除了进行主题的分析外,还可以运用于文本分类、推荐系统等方面。

LDA模型可以描述为一个“上帝掷骰子”的过程,首先,从主题库中随机抽取一个主题,该主题编号为K,接着从骰子库中拿出编号为K的骰子X,进行投掷,每投掷一次,就得到了一个词。不断的投掷它,直到到达预计的文本长
在这里插入图片描述
可以用矩阵的乘法来表示上述的过程:

回到LDA模型来说,LDA模型的输入是一篇一篇用BOW(bag of
words)表示的文档,即用该文档中无序的单词序列来表示该文档(忽略文档中的语法和词语的先后关系)。LDA的输出是每篇文档的主题分布矩阵和每个主题下的单词分布矩阵。简而言之,LDA主题模型的任务就是已知左边的矩阵,通过一些方法,得到右边两个小矩阵。这里的“一些方法”即为LDA采样的方法,目前最主要的有两种,一种是变分贝叶斯推断(variationalBayes,
VB),另一种叫做吉布斯采样(Gibbs Sampling),其中吉布斯采样也被称为蒙特卡洛马尔可夫 (Markov Chain Monte
Carlo,MCMC)采样方法。

总的来说,MCMC实现起来更加简单方便,而VB的速度比MCMC来得快,研究表明他们具有差不多相同的效果。所以,对于大量的数据,采用VB是更为明智的选择。

4 情感分析方法

本文采用的情感分析可以说是一个标准的机器学习的分类问题。目标是给定一条推文,将其分为正向情感、负向情感、中性情感。

预处理

  • POS标注:CMU ArkTweetNLP
  • 字母连续三个相同:替换 “coooooooool”=>“coool”
  • 删除非英文单词
  • 删除URL
  • 删除@:删除用户的提及@username
  • 删除介词、停止词
  • 否定展开:将以"n’t"结尾的单词进行拆分,如"don’t" 拆分为"do not",这里需要注意对一些词进行特殊处理,如"can’t"拆分完之后的结果为"can not",而不是"ca not"。
  • 否定处理:从否定词(如shouldn’t)开始到这个否定词后的第一个标点(.,?!)之间的单词,均加入_NEG后缀。如perfect_NEG。 “NEG”后缀

特征提取

文本特征

  • N-grams

    • 1~3元模型
    • 使用出现的次数而非频率来表示。不仅是因为使用是否出现来表示特征有更好的效果[16],还因为Twitter的文本本身较短,一个短语不太可能在一条推文中重复出现。
  • 感叹号问号个数

    • 在句子中的感叹号和问号,往往含有一定的情感。为此,将它作为特征。
  • 字母重复的单词个数

    • 这是在预处理中对字母重复三次以上单词进行的计数。字母重复往往表达了一定的情感。
  • 否定的个数

    • 否定词出现后,句子的极性可能会发生翻转。为此,把整个句子否定的个数作为一个特征
  • 缩写词个数等

  • POS 标注为[‘N’, ‘V’, ‘R’, ‘O’, ‘A’] 个数(名词、动词、副词、代词、形容词)

  • 词典特征(本文使用的情感词典有:Bing Lius词库[39]、MPQA词库[40]、NRC Hashtag词库和Sentiment140词库[42]、以及相应的经过否定处理的词库[45])

    • 推文中的单词在情感字典个数 (即有极性的单词个数)
    • 推文的 总情感得分:把每个存在于当前字典单词数相加,到推文的 总情感得分:把每个存在于当前 - 字典单词数相加,到推文的 总情感得分:把每个存在于当前字典单词数相加,到推文总分,这个数作为一特征。
    • 推文中单词最大的正向情感得分和负。
    • 推文中所有正向情感的单词分数 和以及 所有负向情感单词的分数和。
    • 最后一个词的分数
  • 表情特征

    • 推文中正向 情感 和负向的表情个数
    • 最后一个表情的极性是 否为正向

特征选择

本文 特征选择主要是针对于 N-grams 特征 的,采用方法如下:


设定min_df(min_df>=0)以及threshold(0 <= threshold <= 1)
对于每个在N-grams的词:
统计其出现于正向、负向、中性的次数,得到pos_cnt, neg_cnt, neu_cnt,以及出现总数N,然后分别计算
pos = pos_cnt / N
neg = neg_cnt / N
neu = neu_cnt / N
对于 pos,neg,neu中任一一个大于阈值threshold 并且N > min_df的,保留该词,否则进行删除。

上述算法中滤除了低频的词,因为这可能是一些拼写错误的词语;并且,删除了一些极性不那么明显的词,有效的降低了维度。

分类器选择

在本文中,使用两个分类器进行对比,他们均使用sklearn提供的接口 。第一个分类器选用SVM线性核分类器,参数设置方面,C =
0.0021,其余均为默认值。第二个分类器是Logistic Regression分类器,其中,设置参数C=0.01105。

在特征选择上,min_df=5, threshold=0.6。

实验

  • SemEval(国际上的一个情感分析比赛)训练数据和测试数据
  • 评价方法采用F-score
  • 对比SemEval2016结果如下

测试集名

在这里插入图片描述

5 部分核心代码

    import jsonfrom django.http import HttpResponsefrom django.shortcuts import renderfrom topic.models.TopicTrendsManager import TopicTrendsManagerfrom topic.models.TopicParameterManager import TopicParameterManagerdef index(request):return render(request, 'topic/index.html')# TODO 检查参数的合法性, and change to post methoddef stream_trends(request):param_manager = TopicParameterManager(request.GET.items())topic_trends = TopicTrendsManager(param_manager)res = topic_trends.get_result(param_manager)return HttpResponse(json.dumps(res), content_type="application/json")def stop_trends(request):topic_trends = TopicTrendsManager(None)topic_trends.stop()res = {"stop": "stop success"}return HttpResponse(json.dumps(res), content_type="application/json")def text(request):return render(request, 'topic/visualization/result_text.html')def bubble(request):return render(request, 'topic/visualization/result_bubble.html')def treemap(request):return render(request, 'topic/visualization/result_treemap.html')def sunburst(request):return render(request, 'topic/visualization/result_sunburst.html')def funnel(request):return render(request, 'topic/visualization/result_funnel.html')def heatmap(request):return render(request, 'topic/visualization/result_heatmap.html')def hashtags_pie(request):return render(request, 'topic/visualization/result_hashtags_pie.html')def hashtags_histogram(request):return render(request, 'topic/visualization/result_hashtags_histogram.html')def hashtags_timeline(request):return render(request, 'topic/visualization/result_hashtags_timeline.html')

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/610659.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

大型语言模型与知识图谱的完美结合:从LLMs到RAG,探索知识图谱构建的全新篇章

最近,使用大型语言模型(LLMs)和知识图谱(KG)开发 RAG(Retrieval Augmented Generation)流程引起了很大的关注。在这篇文章中,我将使用 LlamaIndex 和 NebulaGraph 来构建一个关于费城费利斯队(Philadelphia Phillies)的 RAG 流程。 我们用的是开源的 NebulaGraph 来…

3. SPSS数据文件的基本加工和处理

如何获取SPSS自带的案例数据文件&#xff1f; 首先找到SPSS的安装目录&#xff0c;然后找到Samples文件夹 可以看到有不同语言版本&#xff0c;选择简体中文 就能看到很多.sav文件 数据文件的整理 个案排序 单值排序 例&#xff1a;对于下面的数据集&#xff0c;将工资按…

查看Linux系统内存、CPU、磁盘使用率和详细信息

一、查看内存占用 1、free # free -m 以MB为单位显示内存使用情况 [rootlocalhost ~]# free -mtotal used free shared buff/cache available Mem: 11852 1250 8668 410 1934 9873 Swap: 601…

kafka: 基础概念回顾(生产者客户端和机架感知相关内容)

一、kafka生产者客户端 在kafka体系结构中有如下几个重要的概念&#xff1a; Producer&#xff1a;生产者&#xff0c;负责生产消息并投递到kafka broker的某个的分区中Consumer&#xff1a;消费者&#xff0c;负责消费kafka若干个分区中的消息Broker&#xff1a;kafka服务节…

民安智库(第三方满意度调研公司):物业满意度调查,选择适合的调查方法至关重要

物业满意度调查是企业了解业主对物业管理服务需求和期望的重要工具。然而&#xff0c;选择适合的调查方法也是至关重要的。不同的调查方法可能会影响调查结果的真实性和准确性&#xff0c;进而影响企业改进物业管理服务的决策。本文将分享民安智库在物业满意度调查方面的实践经…

@DependsOn:解析 Spring 中的依赖关系之艺术

欢迎来到我的博客&#xff0c;代码的世界里&#xff0c;每一行都是一个故事 DependsOn&#xff1a;解析 Spring 中的依赖关系之艺术 前言简介基础用法高级用法在 XML 配置中使用 DependsOn通过 Java Config 配置实现依赖管理 生命周期与初始化顺序Bean 生命周期的关键阶段&…

尚硅谷大数据技术-数据湖Hudi视频教程-笔记02【核心概念(基本概念、数据写、数据读)】

大数据新风口&#xff1a;Hudi数据湖&#xff08;尚硅谷&Apache Hudi联合出品&#xff09; B站直达&#xff1a;https://www.bilibili.com/video/BV1ue4y1i7na 尚硅谷数据湖Hudi视频教程百度网盘&#xff1a;https://pan.baidu.com/s/1NkPku5Pp-l0gfgoo63hR-Q?pwdyyds阿里…

如何创业,创业的历程

1、网址导航流行的时候&#xff0c;hao123胜出 2、视频网站流行的时候&#xff0c;优酷 土豆 等胜出 3、团购网站流行的时候&#xff0c;美团胜出 4、导购网站流行的时候&#xff0c;美丽说、蘑菇街胜出 5、p2p流行的时候&#xff0c;不知道谁胜出 6、短视频流行的时候&#xf…

红帽宣布CentOS 7和RHEL 7将在2024年6月30日结束支持,企业面临紧迫的迁移压力!

2020 年红帽 (RedHat&#xff0c;已在 2019 年被 IBM 收购) 单方面宣布终止 CentOS Linux 的开发&#xff0c;此后 CentOS Linux 8 系列的更新已经在 2021 年 12 月结束&#xff0c;而 CentOS Linux 7 系列的更新将在 2024 年 6 月 30 日结束。 与 CentOS Linux 7 一起发布的 R…

CentOS Stream 9配置yum源

文章目录 Red Hat 9 && CentOS Stream 9 配置阿里云yum 源CentOS Stream 9 配置阿里云 yum 源Red Hat 9 配置阿里云 yum 源 Red Hat 9 && CentOS Stream 9 配置阿里云yum 源 CentOS Stream 9 配置阿里云 yum 源 备份原有的 yum文件 [rootlocalhost ~]# cd /…

网络的设置

一、网络设置 1.1查看linux基础的网络设置 网关 route -n ip地址ifconfigDNS服务器cat /etc/resolv.conf主机名hostname路由 route -n 网络连接状态ss 或者 netstat域名解析nslookup host 例题&#xff1a;除了ping&#xff0c;什么命令可以测试DNS服务器来解…

LeetCode 94. 二叉树的中序遍历

94. 二叉树的中序遍历 给定一个二叉树的根节点 root &#xff0c;返回 它的 中序 遍历 。 示例 1&#xff1a; 输入&#xff1a;root [1,null,2,3] 输出&#xff1a;[1,3,2] 示例 2&#xff1a; 输入&#xff1a;root [] 输出&#xff1a;[] 示例 3&#xff1a; 输入&…

【MySQL】数据库的设计

数据库设计 1、多表关系 一对多(多对一)&#xff1a;在多的一方建立外键&#xff0c;指向一的一方的主键。多对多&#xff1a;多对多关系实现需要借助第三张中间表。中间表至少包含两个字段&#xff0c;这两个字段作为第三张表的外键&#xff0c;分别指向两张表的主键一对一&…

企业级进销存管理系统

框架&#xff1a; 进销存管理系统&#xff0c;采用SpringBootShiroMyBatisEasyUI 项目采用Maven构建&#xff0c;数据库文件存放在 sql/jxc.sql 截图 运行项目部分截图&#xff0c; 登录界面&#xff0c;用户名admin&#xff0c;密码admin123 当前库存查询&#xff0c; 进…

搭建Eureka服务注册中心

一、前言 我们在别的章节中已经详细讲解过eureka注册中心的作用&#xff0c;本节会简单讲解eureka作用&#xff0c;侧重注册中心的搭建。 Eureka作为服务注册中心可以进行服务注册和服务发现&#xff0c;注册在上面的服务可以到Eureka上进行服务实例的拉取&#xff0c;主要作用…

用判断对齐大语言模型

1、写作动机&#xff1a; 目前的从反馈中学习方法仅仅使用判断来促使LLMs产生更好的响应&#xff0c;然后将其作为新的示范用于监督训练。这种对判断的间接利用受到无法从错误中学习的限制&#xff0c;这是从反馈中学习的核心精神&#xff0c;并受到LLMs的改进能力的制约。 2…

了解Spring中的依赖注入:@Autowired vs. @Resource

在Spring框架中&#xff0c;依赖注入是一项关键的特性&#xff0c;通过它&#xff0c;我们能够更灵活、更方便地管理和使用各种组件。在依赖注入的实现中&#xff0c;Resource 和 Autowired 是两个常用的注解&#xff0c;它们分别具有不同的特点和用途。在本篇博客中&#xff0…

来自一个系统的自白

天空一声巨响&#xff0c;小炫我闪亮登场&#xff01;初次见面&#xff0c;给大家简单介绍下自己&#xff1a;我是炫我渲染私有云系统&#xff0c;是最新一代的智能渲染集群系统。可以进行私有化部署&#xff0c;在3dsmax、maya等软件中一键完成提交、上传、渲染、下载的任务&a…

ESP32-WIFI(Arduino)

ESP32-WIFI Wi-Fi是一种基于IEEE 802.11标准的无线局域网技术&#xff0c;是Wi-Fi联盟制造商的商标作为产品的品牌认证。它可以让电脑、手机、平板电脑等设备通过无线信号连接到互联网 。 在无线网络中&#xff0c;AP&#xff08;Access Point&#xff09;和 STA&#xff08;St…

八股文 c++ 多态

静态多态 静态多态&#xff08;编译时多态&#xff09;&#xff1a;主要体现在函数重载&#xff08;Overloading&#xff09;和运算符重载上&#xff0c;编译器根据函数签名在编译阶段就能确定调用哪个函数。 动态多态 动态多态&#xff08;运行时多态&#xff09;&#xff…