C++《异常》

前言:C++有一套独立的异常处理机制,今天就来做详细的介绍try,catch这两个词等

在C语言中处理错误的方式和缺陷有:

返回错误码。

 缺陷:

        1.错误码不好设置,比如:除0操作,就不好返回错误码。如果返回一个数字,可能会有两层含义,是错误,还是结果呢。一般我们会在参数加一个输出型参数返回结果,再规定成功和失败返回的数字。

        2.需要程序员去查找错误码对应的含义。比如:很多系统接口函数都是把错误码放到全局变量errno中,表示错误。
终止程序。比如:发生越界,除0,内存错误等,会直接终止程序。

缺陷:并不能明确知道是什么错误。用户难以接收。

1、C++异常概念

异常是面向对象语言处理错误的一种方式。当一个函数出现自己无法处理的错误时,可以抛出异常,然后输的直接或者间接调用者处理这个错误。

 有三个关键字:

  •     throw:当问题出现,程序抛出一个异常。抛异常使用throw关键字完成。
  •     catch:用于捕捉异常。catch(...)可以捕获任意类型的异常,主要时用来捕获没有显示捕获类型的异常。相当于条件判断中的else。
  •     try:try中包含会出现异常的代码或者函数。后面通常会跟一个或者多个catch块。
try
{// 保护的标识代码
}catch( ExceptionName e1 )
{// catch 块
}catch( ExceptionName e2 )
{// catch 块
}catch( ExceptionName eN )
{// catch 块
}

注意:可以抛出任意类型的对象。抛出的异常必须捕获。try要和catch匹配使用,catch里的内容抛出异常时才执行,没有异常,不执行。

 代码举例:

int test(){int a = 0;int b = 0;cin >> a >> b;if (b == 0){throw "除0错误";//抛出异常,异常的描述}return a / b;
}int main(){try{cout << test() << endl;//会出现异常的代码}//捕获异常catch (const char* a){cout << a << endl;}catch (...){cout << "unknow exception" << endl;}system("pause");return 0;
}

运行结果:

1、异常的抛出和匹配原则

  • 1. 异常是通过抛出对象而引发的,该对象的类型决定了应该激活哪个catch的处理代码。
  • 2. 被选中的处理代码是调用链中与该对象类型匹配且离抛出异常位置最近的那一个。
  • 3. 抛出异常对象后,会生成一个异常对象的拷贝,因为抛出的异常对象可能是一个临时对象, 所以会生成一个拷贝对象,这个拷贝的临时对象会在被catch以后销毁。(这里的处理类似 于函数的传值返回)
  • 4. catch(...)可以捕获任意类型的异常,问题是不知道异常错误是什么。
  • 5. 实际中抛出和捕获的匹配原则有个例外,并不都是类型完全匹配,可以抛出的派生类对象, 使用基类捕获,这个在实际中非常实用,我们后面会详细讲解这个。

 在函数调用链中异常栈展开匹配原则

  • 1. 首先检查throw本身是否在try块内部,如果是再查找匹配的catch语句。如果有匹配的,则 调到catch的地方进行处理。
  • 2. 没有匹配的catch则退出当前函数栈,继续在调用函数的栈中进行查找匹配的catch。
  • 3. 如果到达main函数的栈,依旧没有匹配的,则终止程序。上述这个沿着调用链查找匹配的 catch子句的过程称为栈展开。所以实际中我们最后都要加一个catch(...)捕获任意类型的异 常,否则当有异常没捕获,程序就会直接终止。
  • 4. 找到匹配的catch子句并处理以后,会继续沿着catch子句后面继续执行。

 

如果在func2处匹配:

 

    结论:按照函数调用链,一层一层往外找,直到找到匹配的catch块,直接跳到匹配的catch块执行,执行完catch,会继续往catch块后面的语句执行。相当于没有找到匹配的函数栈帧被释放了。

2、异常的重新抛出 

有可能单个的catch不能完全处理一个异常,在进行一些矫正处理后,需要交给更外层的调用链函数来处理。catch可以做完矫正操作,再将异常重新抛出,交给更上层的函数进行处理。

double Division(int a, int b)
{// 当b == 0时抛出异常if (b == 0){throw "Division by zero condition!";}return (double)a / (double)b;
}
void Func()
{// 这里可以看到如果发生除0错误抛出异常,另外下面的array没有得到释放。// 所以这里捕获异常后并不处理异常,异常还是交给外面处理,这里捕获了再// 重新抛出去。int* array = new int[10];try {int len, time;cin >> len >> time;cout << Division(len, time) << endl;}catch (...){cout << "delete []" << array << endl;delete[] array;throw;}cout << "delete []" << array << endl;delete[] array;
}
int main()
{try{Func();}catch (const char* errmsg){cout << errmsg << endl;}return 0;
}

 

3、异常安全问题 

        由于抛异常只要找到匹配的catch就直接跳到catch块执行,没有找到对应catch的函数就不会继续执行。这样导致函数的执行流回很乱。可能会导致一些问题。

  •     构造函数完成对象的构造和初始化,最好不要再构造函数中抛出异常,否则可能导致对象不完整或者没有完全初始化
  •     析构函数主要完成资源的清理,最好不要在析构函数中抛异常,否则可能导致内存泄漏。
  •     C++异常经常会导致资源泄漏问题。比如:在new和delete中抛出异常,导致new出来的资源没有释放,导致内存泄漏。在lock和unlock中抛出异常,导致锁没有释放,导致死锁。

有两种解决办法:

  1. 将异常捕获,释放资源后,将锁重新抛出。
  2. 使用RAII的思想解决。定义一个类封装,管理资源。当要使用时实例化一个类对象,将资源传入,当退出函数,调用对象析构函数,释放资源。

4、异常规范说明 

  • 异常规格说明,是使函数调用者直到函数可能会抛出哪些异常。可以在函数后面接throw(异常类型),列出这个函数可能抛出的所有异常类型。
  • 在函数后面加throw()或者noexcept表示不抛异常。
  • 若没有接口声明表示,此函数可能会抛出任意类型的异常
// 这里表示这个函数会抛出A/B/C/D中的某种类型的异常
void fun() throw(A,B,C,D);
// 这里表示这个函数只会抛出bad_alloc的异常
void* operator new (std::size_t size) throw (std::bad_alloc);
// 这里表示这个函数不会抛出异常
void* operator new (std::size_t size, void* ptr) throw();
void* operator new (std::size_t size, void* ptr) noexcept;

5、 自定义异常体系

 实际使用中很多公司都会自定义自己的异常体系进行规范的异常管理,因为一个项目中如果大家随意抛异常,那么外层的调用者基本就没办法玩了,所以实际中都会定义一套继承的规范体系。这样大家抛出的都是继承的派生类对象,捕获一个基类就可以了

不同的部分可以抛出不同的异常,然后在总的main函数中使用基类捕获所有的异常再来进行特殊的处理 

下面是一个简单的实现:

//基类
//异常
class Exception{
public:Exception(const char* str = nullptr, int id = 0):_errmsg(str), _id(id){}virtual void what()const = 0;
protected:string _errmsg;//错误信息int _id;//错误码
};
//派生类
//数据库异常
class SqlException :public Exception{
public:SqlException(const char *str = nullptr, int id = 1):Exception(str, id){}virtual void what()const{cout << "error msg:" << _errmsg << endl;cout << "error id:" << _id << endl;}
};
//网络异常
class HttpException :public Exception{
public:HttpException(const char *str = nullptr, int id = 2):Exception(str, id){}virtual void what()const{cout << "error msg:" << _errmsg << endl;cout << "error id:" << _id << endl;}
};
//缓存异常
class CacheException :public Exception{
public:CacheException(const char *str = nullptr, int id = 3):Exception(str, id){}virtual void what()const{cout << "error msg:" << _errmsg << endl;cout<< "error id:" << _id << endl;}
};void test(){//当网络连接失败,抛出这个异常即可//throw HttpException("Http fail", 2);//当缓存错误//throw CacheException("Cache error", 3);//当数据库错误throw SqlException("Sql error", 4);
}int main(){try{test();}//用基类捕捉即可catch (const Exception& a){a.what();}catch (...){cout << "unknow exception" << endl;}system("pause");return 0;
}

 6、C++标准库的异常体系

在C++库中也建立了一个异常体系。也给我们提供了一些异常类。我们可以在程序中使用这些标准异常,它们也是以父子类层次结构组织起来的。 

 

 说明:

 

 

int main()
{try{vector<int> v(10, 5);// 这里如果系统内存不够也会抛异常v.reserve(1000000000);// 这里越界会抛异常v.at(10) = 100; }catch (const exception& e) // 这里捕获父类对象就可以{cout << e.what() << endl;}catch (...){cout << "Unkown Exception" << endl;}return 0;
}

 

7、总结以及拓展 

异常总体而言,利大于弊,所以工程中我们还是鼓励使用异常的。另外OO的语言基本都是用异常处理错误,这也可以看出这是大势所趋。

   异常优点:

  •     异常对象定义好了,相比较于错误码,可以清晰准确的展示出错误的各种信息,甚至包含堆栈调用信息,可以帮我们很好的定位程序的bug。
  •     在函数调用链中,深层函数返回错误,我们得层层返回,需要不断的判断是什么错误,再返回给最外层。异常直接会找到对应的catch执行,不需要判断是什么错误。
  •     部分函数更好处理,比如没有返回值的函数或者返回值为自身的T& operator,不好返回错误码。并且pos越界了,内存错误等不需要终止程序。
  •     更好的进行测试

  异常缺点

  •     异常导致执行流乱跳,运行混乱。导致我们调试和分析程序时,比较困难。
  •     C++没有垃圾回收机制,可能会导致异常安全问题。开辟的资源和打开的流,由于执行流乱跳,导致没有释放和关闭等。导致内存泄漏。打开的锁为关闭,导致死锁。
  •     C++标准库的异常体系定义不好,导致我们需要各自定义各自的体系,非常混乱。
  •     随意抛异常,外层不好捕获,所以尽量按找异常规范使用。异常规范有两点:1.派生类继承基类。2.函数后面加thow(),表明要抛什么异常。

总而言之,跟好的返回和描述错误信息,更好定位。针对某些错误,不需要终止程序。

感谢阅读!!!!!!!!!!!

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/600560.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Flume基础知识(八):Flume 拓扑结构全解

1. 简单串联 这种模式是将多个 flume 顺序连接起来了&#xff0c;从最初的 source 开始到最终 sink 传送的 目的存储系统。此模式不建议桥接过多的 flume 数量&#xff0c; flume 数量过多不仅会影响传输速 率&#xff0c;而且一旦传输过程中某个节点 flume 宕机&#xff0c;会…

LC 2807. 在链表中插入最大公约数

2807. 在链表中插入最大公约数 难度 &#xff1a; 中等 题目大意&#xff1a; 给你一个链表的头 head &#xff0c;每个结点包含一个整数值。 在相邻结点之间&#xff0c;请你插入一个新的结点&#xff0c;结点值为这两个相邻结点值的 最大公约数 。 请你返回插入之后的链表…

thinkphp学习04-控制器定义

控制器&#xff0c;即 controller&#xff0c;控制器文件存放在 controller 目录下&#xff1b; 如果想改变系统默认的控制器文件目录&#xff0c;可以在 config 下 route.php 配置&#xff1a; 将controller修改为controller123&#xff0c;就会报错&#xff0c;说明这个配置…

Sqlmap参数设置

Sqlmap参数设置 &#x1f388;&#x1f388;&#x1f388;&#x1f388;&#x1f388;&#x1f388;&#x1f388;&#x1f388;&#x1f388;&#x1f388;&#x1f388;&#x1f388;&#x1f388;&#x1f388; --------------------------------------------注意---------…

易图讯便携式三维电子沙盘实战应用系统

便携式三维电子沙盘采用军工加固三防高性能笔记本&#xff0c;具有IP65级防尘防水防摔性能&#xff0c;以大数据、云计算、虚拟现实、物联网、AI等先进技术为支撑&#xff0c;支持高清卫星影像、DEM高程数据、矢量数据、三维模型、倾斜摄像、BIM、点云、城市白模、等高线、标高…

033 - STM32学习笔记 - TIM定时器(一) - 高级定时器

033 - STM32学习笔记 - TIM定时器&#xff08;一&#xff09; - 高级定时器 上节内容学习了基本定时器&#xff0c;其功能比较简单&#xff0c;配置和使用也比较容易&#xff0c;今天在基本定时器的基础上学习一下高级控制定时器的内容。 在F429上一共有两个高级控制定时器和1…

PyTorch|一次画一批图像

想想这样一个场景&#xff0c;我们训练了一个神经网络&#xff0c;输入一些信息&#xff0c;这个网络可以根据信息为我们生成相关图片。 这些图片并不是一张&#xff0c;而是多张&#xff0c;我们想把这些图片一次全部显示出来&#xff0c;而不是一张一张的显示&#xff08;这…

Python蒸发散物理问题(微积分-线性代数-拉普拉斯和傅立叶变换)

使用Python计算解决土壤物理问题的数值。这里数值过程用于求解微分方程&#xff0c;数值方法将微分转化为代数方程&#xff0c;可以使用传统的线性代数方法求解。 Python拉普拉斯变换求解微分方程示例 假设我们有微分方程 y ′ ′ 2 y ′ 16 y cos ⁡ 4 t y^{\prime \pri…

关于unity的组件VerticalLayoutGroup刷新显示不正常的问题

先说明一下我是如何用到&#xff0c;有哪些处理的 用到这个组件基本上都是将列表进行排版操作的&#xff0c;竖着&#xff0c;或者横着&#xff0c;横着用HorizontalLayoutGroup 还有一个和这个组件搭配的组件叫ContentSizeFitter 先说我是怎么发现这个组件不好用的 //本地读取…

中标麒麟文件系统损坏修复

中标麒麟v5.0桌面版本文件系统损坏修复 1.用系统安装光盘启动到如下图界面&#xff0c;关闭或最小化“安装到硬盘”窗口 2.右击打开命令提示符&#xff0c;执行su – root 3.执行如下图命令&#xff0c;找到除swap格式分区的其他分区 4.按照上图显示的格式执行相关命令&#…

【数据结构】二叉搜索(查找/排序)树

一、二叉搜索树基本概念 1、定义 二叉搜索树&#xff0c;又称为二叉排序树&#xff0c;二叉查找树&#xff0c;它满足如下四点性质&#xff1a; 1&#xff09;空树是二叉搜索树&#xff1b; 2&#xff09;若它的左子树不为空&#xff0c;则左子树上所有结点的值均小于它根结…

第十六章 调用Callout Library函数

文章目录 第十六章 调用Callout Library函数使用 $ZF() 访问 iriszf 标注库 第十六章 调用Callout Library函数 Callout 库是一个共享库&#xff08;DLL 或 SO 文件&#xff09;&#xff0c;其中包含 $ZF Callout 接口的挂钩&#xff0c;允许各种 Z F 函数在运行时加载它并调…

编程笔记 html5cssjs 025 HTML输入类型(1/2)

编程笔记 html5&css&js 025 HTML输入类型&#xff08;1/2&#xff09; 输入类型&#xff1a;text输入类型&#xff1a;password输入类型&#xff1a;submit输入类型: radio输入类型: checkbox输入类型: buttonHTML5 输入类型输入类型&#xff1a;number 本节介绍HTML输…

C# .Net学习笔记—— 异步和多线程(await/async)

一、介绍 1、控制台测试await/async 2、C# 5.0 .Net framework4.5 CLR4.0 以后才有&#xff0c;本身是一种语法糖 二、基本测试 1、不加await测试。 private async static Task TestAsync() {Log.Info($"当前主线程id{Thread.CurrentThread.ManagedThreadId}"…

LabVIEW在高级结构监测中的创新应用

LabVIEW在高级结构监测中的创新应用 LabVIEW作为一个强大的系统设计平台&#xff0c;其在基于BOTDA&#xff08;光时域反射分析&#xff09;技术的结构监测中发挥着核心作用。利用LabVIEW的高效数据处理能力和友好的用户界面&#xff0c;开发了一个先进的监测系统。该系统专门…

第P9周:YOLOv5-Backbone模块实现

一、 前期准备 1. 设置GPU 我的是笔记本电脑&#xff0c;没有GPU import torch import torch.nn as nn import torchvision.transforms as transforms import torchvision from torchvision import transforms, datasets import os,PIL,pathlib,warningswarnings.filterwarni…

OpenSSL provider

提供者 标准提供者默认提供者传统提供者FIPS 提供者基本提供者空提供者加载提供者 标准提供者 提供者是算法实现的容器。每当通过高级别 API 使用加密算法时&#xff0c;都会选择一个提供者。实际上是由该提供者实现执行所需的工作。OpenSSL 自带了五个提供者。在未来&#…

视频智能分析/云存储平台EasyCVR接入海康SDK,通道名称未自动更新该如何解决?

视频监控GB28181平台EasyCVR能在复杂的网络环境中&#xff0c;将分散的各类视频资源进行统一汇聚、整合、集中管理&#xff0c;在视频监控播放上&#xff0c;TSINGSEE青犀视频安防监控汇聚平台可支持1、4、9、16个画面窗口播放&#xff0c;可同时播放多路视频流&#xff0c;也能…

Oracle-存储过程

简介 存储过程(Stored Procedure)是一组为了完成特定功能的SQL语句集&#xff0c;它大大提高了SQL语句的功能和灵活性。存储过程编译后存储在数据库中&#xff0c;所以执行存储过程比执行存储过程中封装的SQL语句更有效率。 语法 存储过程: 一组为了完成某种特定功能的sql语句…

Protobuf 编码结构

编码结构 什么是protobuf protocol buffers 是一种语言无关、平台无关、可扩展的序列化结构数据的方法&#xff0c;可用于数据通信协议和数据存储等&#xff0c;它是 Google 提供的一个具有高效协议数据交换格式工具库&#xff0c;是一种灵活、高效和自动化机制的结构数据序列…