科锐16位汇编学习笔记01汇编基础和debug使用

为什么学习16位汇编?

16位操作指令最多能够操作两个字节,且更能够体现出与硬件的交互。16位下的指令和32位汇编的指令差不多。16位汇编的指令在32位一样使用.要学好汇编必须要了解一点点硬件知识,16汇编是直接操作硬件,32位汇编指令跟硬件隔离了

硬件运行机制

1. 为什么计算机的操作数据的单位是二进制?

字节是内存操作的最小单位,但是才是计算机操作的最小单位

•电子器件二极管

•正向加电则通,反向加电则不同

•门电路

因为二进制是最简单的计算,所以二进制的计算非常快,CPU的处理是通过算术/逻辑 单元 ALU 来处理数据的。

例如:

  • 可以通过位于运算获取结果。

用法:

算术运算的结果是通过位运算得到得

加法

结果 进位

0 + 1 = 1 0

0 + 0 = 0 0

1 + 0 = 1 0

1 + 1 = 0 1

结果 - 异或

进位 - 位与

减法

加补码

乘法

5 = 3 (4 + 1) = 3_4 + 3_1 = 3 <<2 + 3

除法

情况比较复杂

机器码 助记符

7f+12 000111111100010010 add 7f, 12

45&36 10 0100010100110110 and 45, 36

2. 算术/逻辑 单元(ALU)

所有的数学运算都可以由位运算组成。那么更高级的数学运算也可以通过简单的位运算计算。所以将常用运算封装成一个器件,称之为单元。

3. 机器码

类似于1111110000010101010B,可以用来控制硬件的二进制数据,叫做机器码、

4. 助记符

二进制值难记,每种功能的二进制控制码取一个容易记住的名字,叫做助记符,也称之为指令。

00B - add + 加法

01B - sub - 减法

10B - and & 与运算

11B - xor ^ 异或运算

5. 汇编

助记符硬件不能识别,需要将其转换成对应的的机器码,这个过程叫做汇编。(助记符转机器码)

微机系统硬件组成

概述
1. 一个硬件系统都有什么?

● 一个系统不可能由一个硬件单独完成,所以划分处多个硬件模块,然后由一个模块居中调度。称作CPU。

2. CPU如何与其他硬件做交互?

● I/O桥 所有的硬件模块连接到I/O桥,由I/O桥负责辅助cpu与哪一个硬件模块连接。

● 总线

3. cpu如何去选择不同的硬件模块?

● 位多路复用器

CPU:一个系统不可能由一个硬件单独完成,所以划分多个硬件模块,然后由一个硬件模块居中调度

cpu的主要工作:1.算术运算;2.读写,即从一个硬件中读写至另一个硬件中。

•总线 cpu有8位数据/地址线,ram是个256byte的存储器。

控制线用来表明操作类型 00 设置地址 01 读 10 写 11 保留

例如: 将 45 写入 地址 7f

在控制线上 加 00 (设置地址),并将 7f 设置到 数据地址线

ram收到指令将地址调到7f

在控制线上 加 10 (写),并将 45 设置到 数据地址线

ram收到指令将 45 设置到之前写的地址上

读跟写差不多,但是如果要改地址,必须重新开始

8086逻辑图

引脚复用: 引脚用来当地址用,又用来当数据用, AD引脚数决定是多少位cpu

A address 地址 寻址 范围 (0-2^20 1M)

D data 数据 传输数据(16位 2个字节 1个字)

余量

计算机系统组成

从编写完以下代码到屏幕显示字符中间发生了什么?

#include <stdio.h>int main() { printf(“hello world\n”); }

•编译

•加载可执行文件

•执行

8086cpu组织结构

8086cpu内部有2个模块组成
•EU部件

执行部件(excution unit)

译码

执行指令

•BIU部件

总线接口部件(bus interface unit)

取指令

读取数据

写入数据

8086cpu将指令的执行分成多个模块,有什么好处?

目的: 让硬件的利用率最大

•流水线: 可以多个部件同时工作,提高硬件的利用率,从而提高效率。

1.取指令

2.译码

3.取数据

4.执行

5.存储结果

1,2,4是必须的。

流水线并不是越深越好,否则一旦出现分支转移,其后果将会很恶劣

寄存器

cpu的“局部变量”

debug的使用

配置环境

\1. XP系统

2.dosbox (推荐) https://www.dosbox.com

3.msdos player

4.dosbox-x (推荐) https://dosbox-x.com

使用 vscode

注意: 选择使用的汇编工具必须是 MASM , TASM 是 linux 的 语言, dos环境建议使用 dosbox-x

dosbox-x 也可以直接在官网下载

因为这个是模拟的,所以无法访问本地磁盘,可以映射某个文件夹让他当c盘去用

改动配置文件的情况: dosbox-x.conf

取消粘贴的修饰符:

挂载:

mount C: G:\asm16

C:

使用方法

基本DOS命令:

#cd\ ——首先要用cd\ 退回到根目录C>下 #dir ——显示文件列表 #md hb ——建立hb子目录 #cd hb ——进入hb子目录 #copy d:\dos\masm.exe c:\hb ——将D盘dos目录下的masm.exe拷贝到C盘hb目录下 #copy d:\dos\link.exe c:\hb ——将D盘dos目录下的link.exe拷贝到C盘hb目录下 #cd .. ——退回到上一级目录 #del \hb\masm.exe ——删除hb子目录中的某文件 #rd hb ——删除hb子目录(子目录中的所有文件必须先删除) #e:——进入e盘 #cls ——清屏 #type——显示文本文件内容(如type c:\hb\abc.asm)

DosBox常用指令

[range] = [startaddr] [endaddr] 或者 [startaddr]

指令作用用法
帮助文档-?
U反汇编(把机器码变成助记符)-u,-u**[range] ****
**A输入汇编指令a [addr]**
**R查看和修改寄存器r [reg]**
**D查看内存单元d [range]**
**E修改内存单元e addr**
**G直接运行相当于 F5**
**T单步步入相当于 F11**
**P单步步过相当于 F10**
**写入文件(n,cx,w)将内存数据保存到文件-n "文件名"**-r cx 20 (字节数)-w 开始地址(没有默认为100)**
Q退出

a 后面如果跟地址,代表从该地址开始写汇编代码,不跟则默认从ip地址开始写,写完一行按回车确认,全部写完空行回车 

R 后面跟寄存器代表可以修改寄存器的值

e后面跟地址代表修改该处内存的值,按空格 表示 继续修改后面的,按回车表示修改结束

e addr [val1 逗号|空格 val2 逗号|空格 val3 。。。]

e addr "字符串"

注意: 保存数据是从 地址 100 开始的,跟ip地址的值无关,如果要向指定开始位置,w 后面加 开始地址

标志寄存器

常用的是 ZF 和 DF

条件标志:

CF 进位标志:用于反映运算是否产生进位或借位。如果运算结果的最高位产生一个进位或借位,则CF置1,否则置0。运算结果的最高位包括字操作的第15位和字节操作的第7位。移位指令也会将操作数的最高位或最低位移入CF。

PF 奇偶标志:用于反映运算结果低8位中“1”的个数。“1”的个数为偶数,则PF置1,否则置0。

AF 辅助进位标志**:**算数操作结果的第三位(从0开始计数)如果产生了进位或者借位则将其置为1,否则置为0,常在BCD(binary-codedecimal)算术运算中被使用。

ZF 零标志:用于判断结果是否为0。运算结果0,ZF置1,否则置0。

SF 符号标志:用于反映运算结果的符号,运算结果为负,SF置1,否则置0。因为有符号数采用补码的形式表示,所以SF与运算结果的最高位相同。

OF 溢出标志:反映有符号数加减运算是否溢出。如果运算结果超过了8位或者16位有符号数的表示范围,则OF置1,否则置0。

控制标志:

TF 跟踪标志:当TF被设置为1时,CPU进入单步模式,所谓单步模式就是CPU在每执行一步指令后都产生一个单步中断。主要用于程序的调试。8086/8088中没有专门用来置位和清零TF的命令,需要用其他办法。

IF 中断标志:决定CPU是否响应外部可屏蔽中断请求。IF为1时,CPU允许响应外部的可屏蔽中断请求。

DF 方向标志:决定串操作指令执行时有关指针寄存器调整方向。当DF为1时,串操作指令按递减方式改变有关存储器指针值,每次操作后使SI、DI递减。

CF 进位标志

当运算结果的最高有效位有进位(加法)或借位(减法)时设置。  进位标志置1,即CF = 1;否则CF = 0  用途:用于表示两个无符号数高低。  举例:  3AH + 7CH=B6H,     没有进位:CF = 0     NC  AAH + 7CH=(1)26H,有进位:  CF = 1     CY

零标志ZF

若运算结果为0则ZF=1,否则ZF=0。  用途:用于表示两个无符号数高低。  举例:  3AH + 7CH=B6H,结果不是零:   ZF = 0    ZR  84H + 7CH=(1)00H, 结果是零:ZF = 1    NZ

溢出标志OF

溢出只发生在 正数+正数 负数+负数 负数- 正数 正数-负数 的情况

使用该标志位判断运算结果是否溢出。(当将操作数作为有符号数时)  加法:若同符号数相加,结果的符号与之相反则OF=1,否则OF置0。  减法:被减数与减数异号,而结果的符号与减数相同则OF=1,否则置0。  发生了溢出,说明了运算结果不可信。  3AH + 7CH=B6H,     产生溢出:OF = 1     OV  AAH + 7CH=(1)26H, 没有溢出:OF = 0     NV

进位和溢出

进位CF 针对的是无符号数运算,溢出OF 针对的是有符号数运算。  当看成无符号数,则关注CF标志,看成有符号数,则关注OF标志。 

cpu运算时,不管数据是有符号还是无符号,它运算完,会当作有符号数设置 CF 位,也会当作无符号数设置 of 位,即2个操作位都会设置, 至于最后看哪个位要根据我们的业务逻辑自己去选择

符号标志SF

运算结果最高位为1,SF为1,否则为0。  有符号数据用最高有效位表示数据的符号,最高有效位是符号标志的状态。  举例:  3AH + 7CH=B6H,     最高位D7=1:   SF = 1    NG  84H + 7CH=(1)00H, 最高位D7=0:   SF = 0    PL

奇偶标志位PF

当运算结果(指低8位)中1的个数为偶数时,PF置1,否则置0。  作用:该标志位主要用于检测数据在传输过程中的错误。  举例:  3AH + 7CH=B6H=10110110B  结果中有5个1,是奇数:PF = 0   PO 

3AH + 7AH=B6H=10110100B  结果中有4个1,是偶数:PF = 1   PE

辅助进位标志位AF

科锐学习笔记-第三阶段-16位汇编 01 汇编基础和debug使用-编程&逆向技术交流-游戏安全实验室

表示一个字节的低4位是否有进位和借位。运算时D3位(低半字节)有进位或借位时,AF = 1;否则AF = 0。 

处理器内部使用,用于十进制算术运算调整指令中,用户一般不必关心 

3AH + 7CH=B6H,D3有进位:AF = 1    AC  31H + 71H=A2H,D3无进位:AF = 0    NA

标志位状态总结
标志位标志名称FLASETURE
OF溢出标志NV OV
DF方向标志UPDN
IF中断标志DIEI
SF符号标志PLNG
ZF零标志NZZR
AF辅助进位标志NAAC
PF奇偶标志POPE
CF进位标志NCCY

在 debug中顺序

OF[溢出 ] DF[方向] IF[中断] SF[符号] ZF[零] AF[辅助进位] PF[奇偶] CF[进位]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/600383.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UICollection Compositional Layout全详解

本文字数&#xff1a;8325字 预计阅读时间&#xff1a;45分钟 01 Collection View Layout全详解 UICollectionView在iOS中是构建复杂布局的强大工具。iOS13中引入的 UICollectionViewCompositionalLayout为创建自定义布局提供了全新的可能性。本文将深入探讨Compositional Lay…

频率域滤波图像复原之带阻滤波器的python实现——数字图像处理

原理&#xff1a; 带阻滤波器&#xff08;Band-Stop Filter&#xff09;是一种在信号处理领域常用的滤波器&#xff0c;它的主要功能是去除&#xff08;或减弱&#xff09;信号中特定频率范围内的成分&#xff0c;同时允许其他频率范围的信号通过。这种滤波器在多种应用中都非…

C语言中#define的用法详解

C语言中的#define是一个预处理器指令&#xff0c;用于定义常量、宏和条件编译。在本文中&#xff0c;我们将深入探讨#define的各种用法&#xff0c;以及它在C程序中的作用。 1. 定义常量 #define最基本的用法之一是定义常量。通过使用#define&#xff0c;可以在程序中为一个值…

计算机网络——多址复用技术

1. 频分多址&#xff08;FDMA&#xff09; 1.1 基本原理 频率分配&#xff1a;在FDMA系统中&#xff0c;整个可用的频带被分割成多个较小的频带或通道。每个通道分配给一个用户。 时间利用&#xff1a;用户在分配给他们的频道上持续进行通信&#xff0c;不受时间限制。 1.2 优…

云尚办公项目学习

完整的笔记可以参考这个专栏&#xff0c;写的挺详细的&#xff1a;云尚办公课件笔记&#xff0c;come on boy form-create前端组件 formProps记录了表单有哪些表单项&#xff0c;分别是哪些类型&#xff08;下拉&#xff0c;单选&#xff0c;输入框&#xff09; formOptions记…

移动零【双指针】

Problem: 283. 移动零 文章目录 思路 & 解题方法复杂度Code 思路 & 解题方法 使用双指针&#xff0c;左指针指向当前已经处理好的序列的尾部&#xff0c;右指针指向待处理序列的头部。 右指针不断向右移动&#xff0c;每次右指针指向非零数&#xff0c;则将左右指针对应…

VuePress部署到GitHub Pages

一、git push自动部署 1、创建用于工作流的文件 在项目根目录下创建一个用于 GitHub Actions 的工作流 .yml 文件 name: docson:# 每当 push 到 main 分支时触发部署push:branches: [main]# 手动触发部署workflow_dispatch:jobs:docs:runs-on: ubuntu-lateststeps:- uses: a…

深入Pandas:数据分析的强大工具

文章目录 引言Pandas简介Pandas的核心功能实战示例&#xff1a;数据分析与可视化示例目的环境需求示例数据集示例过程及结果源代码 结语 引言 在当今快速发展的数据科学领域&#xff0c;Python凭借其强大的库生态系统&#xff0c;特别是像Pandas这样的库&#xff0c;已成为数据…

MACOS Atrust服务异常

MAC版Atrust服务异常 点击进入办公后出现提示其一&#xff1a; 核心服务未启动&#xff0c;部分功能存在异常&#xff0c;确定重新启动吗&#xff1f; 可能的原因&#xff1a; 1.上次已完全退出客户端 2.核心服务被其他程序优化禁用 点击重新启动后&#xff0c;出现提示&#x…

【React】react-router-dom中的HashRouter和BrowserRouter实现原理

1. 前言 在之前整理BOM的五个对象时&#xff0c;提到&#xff1a; location.hash发生改变后&#xff0c;会触发hashchange事件&#xff0c;且history栈中会增加一条记录&#xff0c;但页面不会重新加载——实现HashRouter的关键history.pushState(state, , URL)执行后&#xf…

Chinese-llama-2部署踩坑记录

Chinese-llama-2部署踩坑记录 1. Chinese-LLaMA-Alpaca-2A. 部署a. inference_with_transformers_zhb. text generation webui_zhc. api_calls_zhd. llamacpp_zhe. privategpt_zhf. langchain_zh Tool Github 1. Chinese-LLaMA-Alpaca-2 A. 部署 a. inference_with_transform…

新手深入PyTorch中RNN、LSTM和GRU使用和理解

目录 torch.nn子模块Recurrent Layers nn.RNNBase RNNBase 类描述 RNNBase 类的功能和作用 flatten_parameters() 方法 示例代码 nn.RNN RNN 类描述 RNN 类的功能和作用 RNN 类的参数 输入和输出 注意事项 示例代码 nn.LSTM LSTM 类描述 LSTM 类的功能和作用 …

05、Kafka ------ CMAK 各个功能的作用解释(主题和分区 详解,用命令行和图形界面创建主题和查看主题)

目录 CMAK 各个功能的作用解释&#xff08;主题&#xff09;★ 主题★ 分区★ 创建主题&#xff1a;★ 列出和查看主题 CMAK 各个功能的作用解释&#xff08;主题&#xff09; ★ 主题 Kafka 主题虽然也叫 topic&#xff0c;但它和 Pub-Sub 消息模型中 topic 主题及 AMQP 的 t…

【AI视野·今日NLP 自然语言处理论文速览 第六十六期】Tue, 31 Oct 2023

AI视野今日CS.NLP 自然语言处理论文速览 Tue, 31 Oct 2023 (showing first 100 of 141 entries) Totally 100 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Computation and Language Papers The Eval4NLP 2023 Shared Task on Prompting Large Language Models a…

nginx下日志配置和排查错误

目录 一&#xff1a;配置 二&#xff1a;排查日志 一&#xff1a;配置 在Nginx中&#xff0c;日志配置是记录服务器活动和排查问题的重要环节。以下是一些常见的Nginx日志配置选项&#xff1a; 日志级别&#xff1a;通过设置日志级别&#xff0c;可以控制日志的详细程度。常…

【心得杂记】简单聊聊限制高速面阵相机性能的因素

研究了限制高速面阵相机发展的因素&#xff0c;感觉就是揭开了薄雾面纱之后的复杂。 个人观点&#xff0c;不保证全对~ 欢迎讨论~ 高速相机是一个整体&#xff0c;涉及的各个零部件和模组很多&#xff0c;每个环节都会影响相机指标的提高。 高速相机主要包括的核心部件有&#…

什么是低代码开发平台(Low Code Platform) 有什么优势特点

低代码平台(Low Code Platform)是一种用于快速开发应用程序的软件开发平台。它通过可视化的界面和简化的开发工具&#xff0c;使开发人员能够使用少量的编码和配置来构建复杂的应用程序。 白码低代码平台是一种高效、灵活的软件开发工具&#xff0c;通过可视化的界面和少量的编…

vue3(十二)-基础入门之反向代理

一、反向代理 当遇到跨域问题时&#xff0c;可以通过反向代理解决跨域问题 1、创建一个与 package.json 同级的文件 vue.config.js vue.config.js &#xff1a; 代理以 /ajax 为开头的地址。代理服务器为 &#xff1a;https://www.xxxx.com const { defineConfig } requi…

普中STM32-PZ6806L开发板(HAL库函数实现-按键扫描)

简介 实现按键扫描, 实现四个按键按下控制灯的亮灭 电路原理图 按键电路原理图 按键与主芯片引脚原理图 其他知识 原理图分析 Key_UP按下会有高电平输入, 所以电路设置应该是默认低电平, 初始化为下拉输入 Key_Left/Right/Down按下会有低电平&#xff0c; 初始化为下拉输…

OpenHarmony从入门到放弃(四)

设计一款使用Harmony开发的App 接下来我会通过设计并开发一款资讯类的App来入门OpenHarmony&#xff1b; 以下是我对App的设计想法&#xff1b; 一、模块划分 内容模块&#xff1a;App的核心模块&#xff0c;负责管理和展示资讯内容&#xff0c;具体包括内容获取与处理&…