图像分割实战-系列教程11:U2NET显著性检测实战3

在这里插入图片描述

🍁🍁🍁图像分割实战-系列教程 总目录

有任何问题欢迎在下面留言
本篇文章的代码运行界面均在Pycharm中进行
本篇文章配套的代码资源已经上传

U2NET显著性检测实战1
U2NET显著性检测实战2
U2NET显著性检测实战3

6、上采样操作与REBNCONV

def _upsample_like(src,tar):src = F.upsample(src,size=tar.shape[2:],mode='bilinear')return src

使用双线性插值进行上采样操作

class REBNCONV(nn.Module):def __init__(self,in_ch=3,out_ch=3,dirate=1):super(REBNCONV,self).__init__()self.conv_s1 = nn.Conv2d(in_ch,out_ch,3,padding=1*dirate,dilation=1*dirate)self.bn_s1 = nn.BatchNorm2d(out_ch)self.relu_s1 = nn.ReLU(inplace=True)def forward(self,x):hx = xxout = self.relu_s1(self.bn_s1(self.conv_s1(hx)))return xout

定义二维卷积、二维池化、Relu,然后进行对应的前向传播

7、各个残差Unet比较

在 U²-Net 中,RSU7, RSU6, RSU5, RSU4, 和 RSU4F 是用于构造网络不同层级的模块。它们共同构成了 U²-Net 的多层次特征提取体系

  1. RSU7 (Residual U-Block 7):

    • RSU7 是最深层的模块,具有最大的感受野,用于网络的最初阶段,用于从输入图像中提取基础和全局特征。在 U2NET 架构中,RSU7 作为第一个阶段使用。
  2. RSU6, RSU5, RSU4:

    • 这些模块是 U²-Net 架构中的中间层。RSU6, RSU5, RSU4 的主要区别在于它们的深度和感受野的大小。每个模块都比前一个模块浅一点,感受野也稍小。这些层用于提取越来越具体的特征,随着网络的深入,这些特征越来越侧重于局部细节。
  3. RSU4F (Residual U-Block 4-Full):

    • RSU4F 是一种特殊的 RSU 模块,它不使用最大池化层来减少特征图的尺寸,而是使用不同膨胀率的卷积来增大感受野(即空洞卷积),RSU4F 用于网络的深层,用于捕捉更细粒度的特征。

在 U²-Net 的结构中,这些 RSU 模块按照从 RSU7RSU4F 的顺序排列。

在编码器阶段,随着层级的增加,模块逐渐变得更浅,专注于更细节的特征提取。

在解码器阶段,这些模块的输出与对应编码器阶段的输出进行融合,通过上采样逐步恢复图像的空间维度,同时保持了特征的丰富性。

总结来说,RSU7RSU4F 的不同主要在于它们的深度(层数)和膨胀率,这影响了它们的感受野大小和特征提取的具体性。

8、损失函数

在前面的网络架构中,我们可以看到一共有d0到d6共7个输出,每一步都有一个对应的输出,每一步都可以计算损失,损失函数:

d0, d1, d2, d3, d4, d5, d6 = net(inputs_v)
loss2, loss = muti_bce_loss_fusion(d0, d1, d2, d3, d4, d5, d6, labels_v)
def muti_bce_loss_fusion(d0, d1, d2, d3, d4, d5, d6, labels_v):loss0 = bce_loss(d0,labels_v)loss1 = bce_loss(d1,labels_v)loss2 = bce_loss(d2,labels_v)loss3 = bce_loss(d3,labels_v)loss4 = bce_loss(d4,labels_v)loss5 = bce_loss(d5,labels_v)loss6 = bce_loss(d6,labels_v)loss = loss0 + loss1 + loss2 + loss3 + loss4 + loss5 + loss6print("l0: %3f, l1: %3f, l2: %3f, l3: %3f, l4: %3f, l5: %3f, l6: %3f\n"%(loss0.item(),loss1.item(),loss2.item(),loss3.item(),loss4.item(),loss5.item(),loss6.item()))return loss0, loss
  1. d0到d6是U2Net的每一步输出,labels_v是标签 这里的标签都是完全相同的数据
  2. 标签即原始输入图像对应完全一样大小的灰度数据,里面只区分了需要分割的前景和背 此外值得一提的是PyTorch框架的
  3. nn.BCELoss损失函数具有非常好的泛化能力,不管你是像素级别的矩阵,还是单个值,都是使用完全一样的2分类
  4. 对多步进行监督的训练,就叫做多监督训练:能够提高模型对不同尺寸的学习、多步输出有助于改善网络中的梯度流动、同类型和复杂度的数据时更加灵活和适应性强、有助于捕捉从低级到高级的特征

U2NET显著性检测实战1
U2NET显著性检测实战2
U2NET显著性检测实战3

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/600211.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JS/JQ实现小程序/H5验证码页面

话不多说&#xff0c;先上效果图 核心代码 1、html/css关键代码 <div class"obtain-verification-code"><div class"obtain-verification-code-input-content"><input id"input-0" class"verification-code-input" m…

Spring Data Jpa 使用EntityManager执行SQL操作数据

使用EntityManager执行原生SQL语句可以通过createNativeQuery方法实现。以下是一个简单的例子&#xff0c;演示如何使用EntityManager执行SQL语句进行数据库操作。 import javax.persistence.EntityManager; import javax.persistence.PersistenceContext; import javax.trans…

Java学习笔记(四)——正则表达式

文章目录 正则表达式基本规则字符类(只匹配一个字符)预定义字符(只匹配一个字符)数量词练习正则表达式插件 爬虫利用正则表达式获取想要的内容爬取网络信息练习有条件的爬取贪婪爬取非贪婪爬取正则表达式在字符串中的使用 分组捕获分组正则表达式外部使用非捕获分组正则表达式忽…

MobaXterm SSH 免密登录配置

文章目录 1.简介2.SSH 免密登录配置第一步&#xff1a;点击 Session第二步&#xff1a;选择 SSH第三步&#xff1a;输入服务器地址与用户名第四步&#xff1a;设置会话名称第五步&#xff1a;点击 OK 并输入密码 3.密码管理4.小结参考文献 1.简介 MobaXterm 是一个功能强大的终…

智能座舱的下一个价值“爆点”——让“光”更智能

汽车智能化快速升级&#xff0c;智能座舱作为人机交互的主要窗口&#xff0c;交互模态、用户体验也呈现多维度升级。 例如&#xff0c;今年下半年上市的多款高端智能车型纷纷基于高性能座舱硬件平台&#xff0c;集成了AR-HUD、DMS/OMS等高阶功能&#xff0c;同时结合超大屏/多…

Transformer 的双向编码器表示 (BERT)

一、说明 本文介绍语言句法中&#xff0c;最可能的单词填空在self-attention的表现形式&#xff0c;以及内部原理的介绍。 二、关于本文概述 在我之前的博客中&#xff0c;我们研究了关于生成式预训练 Transformer 的完整概述&#xff0c;关于生成式预训练 Transformer (GPT) 的…

VMware ESXI 8 安装ipmitool 调整戴尔服务器风扇转速

本文内容适合ESXI 8版本安装ipmitool &#xff0c;进行管理&#xff0c;已知的是8.0以上版本无法安装社区的vib.所以需要自己编译文件&#xff0c;7.0及之前的版本可以安装vib版本的ipmtools。 一、编译好的适用于esxi8的ipmitool下载 ipmitool下载 二、安装ipmitool 1、开…

基于spark的Hive2Pg数据同步组件

一、背景 Hive中的数据需要同步到pg供在线使用&#xff0c;通常sqoop具有数据同步的功能&#xff0c;但是sqoop具有一定的问题&#xff0c;比如对数据的切分碰到数据字段存在异常的情况下&#xff0c;数据字段的空值率高、数据字段重复太多&#xff0c;影响sqoop的分区策略&…

软件工程:数据流图相关知识和多实例分析

目录 一、数据流图相关知识 1. 基本介绍 2. 常用符号 3. 附加符号 二、数据流图实例分析 1. 活期存取款业务处理系统 2. 工资计算系统 3. 商业自动化系统 4. 学校人事管理系统 5. 教材征订系统 6. 高考录取统分子系统 7. 订货系统 8. 培训中心管理系统 9. 考务处…

​已解决java.lang.ArrayIndexOutOfBoundsException异常的正确解决方法,亲测有效!!!​

已解决java.lang.ArrayIndexOutOfBoundsException异常的正确解决方法&#xff0c;亲测有效&#xff01;&#xff01;&#xff01; 目录 报错问题 解决思路 解决方法 总结 Q1 - 报错问题 java.long.ArrayIndexOutOfBoundsException 是Java中的一个运行时异常​&#xff0c…

强化学习5——动态规划初探

动态规划具体指的是在某些复杂问题中&#xff0c;将问题转化为若干个子问题&#xff0c;并在求解每个子问题的过程中保存已经求解的结果&#xff0c;以便后续使用。实际上动态规划更像是一种通用的思路&#xff0c;而不是具体某个算法。 在强化学习中&#xff0c;被用于求解值函…

【网络工程师】交换机的配置

一、交换机5大基本工作模式 配置网络设备&#xff0c;需要使用console线&#xff0c;在PC上需要使用软件 “超级终端” 1、用户模式&#xff1a;switch> 可以查看交换机的额基本简单信息&#xff0c;且不能做任何修改配置&#xff01; 2、特权模式&#xff1a;switch## …

在使用Composer管理的项目中安装和使用

在使用Composer管理的项目中安装 如果项目框架本身就是使用Composer来管理包的话&#xff0c;直接在项目根目录执行Composer安装命令后&#xff0c;即可在项目控制器中调用QueryList来使用&#xff0c;这种框架有&#xff1a; Laravel、ThinkPHP5等。 在项目根目录执行compo…

SQL日期列更新操作详解

在实际的数据库管理过程中&#xff0c;有时我们需要对数据库中的日期列进行更新。这篇博客将详细介绍一条 SQL 语句&#xff0c;该语句用于更新 referral_up_order 表中的多个日期列&#xff0c;并将它们的日期部分更改为 2023-10-24&#xff0c;同时保留原始时间部分。 1、背…

LeGO-LOAM 几个特有函数的分析(2)

接上回LeGO-LOAM 几个特有函数的分析&#xff08;1&#xff09; 二、广度优先遍历 广度优先遍历&#xff08;Breadth-First Search, BFS&#xff09;是一种用于遍历或搜索树或图的算法。这种算法从树的根&#xff08;或图的某一指定节点&#xff09;开始&#xff0c;然后探索…

Linux 常见服务配置

笔记所以内容很多&#xff0c;建议选择性看看 SSH 对应服务 sshd 注意&#xff1a;配置文件 配制文件修改需要重启或重载sshd服务才能生效 systemctl sshd reload # 重载 sshd 配置文件 systemctl sshd restart # 重启 sshd 服务客户端配置文件 man ssh_config 可以…

数据库高可用mha

MHA搭建的步骤 一.配置主从复制 1.初始化环境 #在四台服务器上初始化环境 systemctl stop firewalld systemctl disable firewalld setenforce 0 2.修改 Master、Slave1、Slave2 节点的主机名 #在Master上 hostnamectl set-hostname mysql1 su#在Slave1 hostnamectl set-h…

泛型-限定存储数据类型

泛型 泛型的本质&#xff1a;参数类型化 概述&#xff1a;将类型由原来的具体的类型参数化&#xff0c;然后在 使用/调用 时传入具体的类型 格式&#xff1a; <类型> 指定一种类型的格式&#xff0c;这里的类型可以看成是 方法中的形参&#xff08;如果不理解可去看下形…

Flink窗口与WaterMark

本文目录 窗口的生命周期Window Assigners窗口函数&#xff08;Window Functions&#xff09;TriggersEvictorsAllowed Lateness 窗口 窗口&#xff08;Window&#xff09;是处理无界流的关键所在。窗口可以将数据流装入大小有限的“桶”中&#xff0c;再对每个“桶”加以处理。…

域名流量被劫持怎么办?如何避免域名流量劫持?

随着互联网不断发展&#xff0c;流量成为线上世界的巨大财富。然而一种叫做域名流量劫持的网络攻击&#xff0c;将会在不经授权的情况下控制或重定向一个域名的DNS记录&#xff0c;导致用户在访问一个网站时&#xff0c;被引导到另一个不相关的网站&#xff0c;从而劫持走原网站…