目录
效果
模型信息
项目
代码
下载
C# Onnx yolov8 pokemon detectio
效果

模型信息
Model Properties
 -------------------------
 date:2023-12-25T17:55:44.583431
 author:Ultralytics
 task:detect
 license:AGPL-3.0 https://ultralytics.com/license
 version:8.0.172
 stride:32
 batch:1
 imgsz:[640, 640]
 names:{0: 'pikachu', 1: 'charmander', 2: 'bulbasaur', 3: 'squirtle', 4: 'eevee', 5: 'other', 6: 'jigglypuff'}
 ---------------------------------------------------------------
Inputs
 -------------------------
 name:images
 tensor:Float[1, 3, 640, 640]
 ---------------------------------------------------------------
Outputs
 -------------------------
 name:output0
 tensor:Float[1, 11, 8400]
 ---------------------------------------------------------------
项目

代码
using Microsoft.ML.OnnxRuntime;
 using Microsoft.ML.OnnxRuntime.Tensors;
 using OpenCvSharp;
 using System;
 using System.Collections.Generic;
 using System.Drawing;
 using System.Drawing.Imaging;
 using System.Linq;
 using System.Windows.Forms;
namespace Onnx_Yolov8_Demo
 {
     public partial class Form1 : Form
     {
         public Form1()
         {
             InitializeComponent();
         }
        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
         string image_path = "";
         string startupPath;
         string classer_path;
         DateTime dt1 = DateTime.Now;
         DateTime dt2 = DateTime.Now;
         string model_path;
         Mat image;
         DetectionResult result_pro;
         Mat result_image;
         Result result;
        SessionOptions options;
         InferenceSession onnx_session;
         Tensor<float> input_tensor;
         List<NamedOnnxValue> input_container;
         IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
         DisposableNamedOnnxValue[] results_onnxvalue;
Tensor<float> result_tensors;
        private void button1_Click(object sender, EventArgs e)
         {
             OpenFileDialog ofd = new OpenFileDialog();
             ofd.Filter = fileFilter;
             if (ofd.ShowDialog() != DialogResult.OK) return;
             pictureBox1.Image = null;
             image_path = ofd.FileName;
             pictureBox1.Image = new Bitmap(image_path);
             textBox1.Text = "";
             image = new Mat(image_path);
             pictureBox2.Image = null;
         }
        private void button2_Click(object sender, EventArgs e)
         {
             if (image_path == "")
             {
                 return;
             }
            button2.Enabled = false;
             pictureBox2.Image = null;
             textBox1.Text = "";
            //图片缩放
             image = new Mat(image_path);
             int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
             Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
             Rect roi = new Rect(0, 0, image.Cols, image.Rows);
             image.CopyTo(new Mat(max_image, roi));
            float[] result_array = new float[8400 * 84];
             float[] factors = new float[2];
             factors[0] = factors[1] = (float)(max_image_length / 640.0);
            // 将图片转为RGB通道
             Mat image_rgb = new Mat();
             Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
             Mat resize_image = new Mat();
             Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));
            // 输入Tensor
             for (int y = 0; y < resize_image.Height; y++)
             {
                 for (int x = 0; x < resize_image.Width; x++)
                 {
                     input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;
                     input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;
                     input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;
                 }
             }
            //将 input_tensor 放入一个输入参数的容器,并指定名称
             input_container.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));
            dt1 = DateTime.Now;
             //运行 Inference 并获取结果
             result_infer = onnx_session.Run(input_container);
             dt2 = DateTime.Now;
            // 将输出结果转为DisposableNamedOnnxValue数组
             results_onnxvalue = result_infer.ToArray();
            // 读取第一个节点输出并转为Tensor数据
             result_tensors = results_onnxvalue[0].AsTensor<float>();
result_array = result_tensors.ToArray();
            resize_image.Dispose();
             image_rgb.Dispose();
            result_pro = new DetectionResult(classer_path, factors);
             result = result_pro.process_result(result_array);
             result_image = result_pro.draw_result(result, image.Clone());
            if (!result_image.Empty())
             {
                 pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
                 textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
             }
             else
             {
                 textBox1.Text = "无信息";
             }
            button2.Enabled = true;
         }
        private void Form1_Load(object sender, EventArgs e)
         {
             startupPath = System.Windows.Forms.Application.StartupPath;
            model_path = "model/yolov8-pokemon-detection.onnx";
             classer_path = "model/lable.txt";
            // 创建输出会话,用于输出模型读取信息
             options = new SessionOptions();
             options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
             options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
            // 创建推理模型类,读取本地模型文件
             onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径
            // 输入Tensor
             input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });
             // 创建输入容器
             input_container = new List<NamedOnnxValue>();
            image_path = "test_img/1.jpg";
             pictureBox1.Image = new Bitmap(image_path);
             image = new Mat(image_path);
}
        private void pictureBox1_DoubleClick(object sender, EventArgs e)
         {
             Common.ShowNormalImg(pictureBox1.Image);
         }
        private void pictureBox2_DoubleClick(object sender, EventArgs e)
         {
             Common.ShowNormalImg(pictureBox2.Image);
         }
        SaveFileDialog sdf = new SaveFileDialog();
         private void button3_Click(object sender, EventArgs e)
         {
             if (pictureBox2.Image == null)
             {
                 return;
             }
             Bitmap output = new Bitmap(pictureBox2.Image);
             sdf.Title = "保存";
             sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";
             if (sdf.ShowDialog() == DialogResult.OK)
             {
                 switch (sdf.FilterIndex)
                 {
                     case 1:
                         {
                             output.Save(sdf.FileName, ImageFormat.Jpeg);
                             break;
                         }
                     case 2:
                         {
                             output.Save(sdf.FileName, ImageFormat.Png);
                             break;
                         }
                     case 3:
                         {
                             output.Save(sdf.FileName, ImageFormat.Bmp);
                             break;
                         }
                     case 4:
                         {
                             output.Save(sdf.FileName, ImageFormat.Emf);
                             break;
                         }
                     case 5:
                         {
                             output.Save(sdf.FileName, ImageFormat.Exif);
                             break;
                         }
                     case 6:
                         {
                             output.Save(sdf.FileName, ImageFormat.Gif);
                             break;
                         }
                     case 7:
                         {
                             output.Save(sdf.FileName, ImageFormat.Icon);
                             break;
                         }
                    case 8:
                         {
                             output.Save(sdf.FileName, ImageFormat.Tiff);
                             break;
                         }
                     case 9:
                         {
                             output.Save(sdf.FileName, ImageFormat.Wmf);
                             break;
                         }
                 }
                 MessageBox.Show("保存成功,位置:" + sdf.FileName);
             }
         }
     }
 }
using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.Linq;
using System.Windows.Forms;namespace Onnx_Yolov8_Demo
{public partial class Form1 : Form{public Form1(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";string startupPath;string classer_path;DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;string model_path;Mat image;DetectionResult result_pro;Mat result_image;Result result;SessionOptions options;InferenceSession onnx_session;Tensor<float> input_tensor;List<NamedOnnxValue> input_container;IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;DisposableNamedOnnxValue[] results_onnxvalue;Tensor<float> result_tensors;private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);textBox1.Text = "";image = new Mat(image_path);pictureBox2.Image = null;}private void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}button2.Enabled = false;pictureBox2.Image = null;textBox1.Text = "";//图片缩放image = new Mat(image_path);int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);Rect roi = new Rect(0, 0, image.Cols, image.Rows);image.CopyTo(new Mat(max_image, roi));float[] result_array = new float[8400 * 84];float[] factors = new float[2];factors[0] = factors[1] = (float)(max_image_length / 640.0);// 将图片转为RGB通道Mat image_rgb = new Mat();Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);Mat resize_image = new Mat();Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));// 输入Tensorfor (int y = 0; y < resize_image.Height; y++){for (int x = 0; x < resize_image.Width; x++){input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;}}//将 input_tensor 放入一个输入参数的容器,并指定名称input_container.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));dt1 = DateTime.Now;//运行 Inference 并获取结果result_infer = onnx_session.Run(input_container);dt2 = DateTime.Now;// 将输出结果转为DisposableNamedOnnxValue数组results_onnxvalue = result_infer.ToArray();// 读取第一个节点输出并转为Tensor数据result_tensors = results_onnxvalue[0].AsTensor<float>();result_array = result_tensors.ToArray();resize_image.Dispose();image_rgb.Dispose();result_pro = new DetectionResult(classer_path, factors);result = result_pro.process_result(result_array);result_image = result_pro.draw_result(result, image.Clone());if (!result_image.Empty()){pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";}else{textBox1.Text = "无信息";}button2.Enabled = true;}private void Form1_Load(object sender, EventArgs e){startupPath = System.Windows.Forms.Application.StartupPath;model_path = "model/yolov8-pokemon-detection.onnx";classer_path = "model/lable.txt";// 创建输出会话,用于输出模型读取信息options = new SessionOptions();options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行// 创建推理模型类,读取本地模型文件onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径// 输入Tensorinput_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });// 创建输入容器input_container = new List<NamedOnnxValue>();image_path = "test_img/1.jpg";pictureBox1.Image = new Bitmap(image_path);image = new Mat(image_path);}private void pictureBox1_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox1.Image);}private void pictureBox2_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox2.Image);}SaveFileDialog sdf = new SaveFileDialog();private void button3_Click(object sender, EventArgs e){if (pictureBox2.Image == null){return;}Bitmap output = new Bitmap(pictureBox2.Image);sdf.Title = "保存";sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";if (sdf.ShowDialog() == DialogResult.OK){switch (sdf.FilterIndex){case 1:{output.Save(sdf.FileName, ImageFormat.Jpeg);break;}case 2:{output.Save(sdf.FileName, ImageFormat.Png);break;}case 3:{output.Save(sdf.FileName, ImageFormat.Bmp);break;}case 4:{output.Save(sdf.FileName, ImageFormat.Emf);break;}case 5:{output.Save(sdf.FileName, ImageFormat.Exif);break;}case 6:{output.Save(sdf.FileName, ImageFormat.Gif);break;}case 7:{output.Save(sdf.FileName, ImageFormat.Icon);break;}case 8:{output.Save(sdf.FileName, ImageFormat.Tiff);break;}case 9:{output.Save(sdf.FileName, ImageFormat.Wmf);break;}}MessageBox.Show("保存成功,位置:" + sdf.FileName);}}}
}
下载
源码下载