目录标题
- 一、Buffered Channels and Worker Pools
- 1. Goroutine and Channel Example 线程和通道示例
- 2. Deadlock 死锁
- 3. Closing buffered channels 关闭通道
- 4. Length vs Capacity 长度和容量
- 5. WaitGroup
- 6. Worker Pool Implementation 线程池
- 二、Select
- 1. Example
- 2. Default case 默认选择
- 3. Deadlock and default case 死锁与默认选择
- 4. Random selection 随机选择
- 三、Mutex
- 1. Program with a race condition 无锁示例
- 2. Solving the race condition using a mutex 互斥锁解决方案
- 3. Solving the race condition using channel 通道解决方案
一、Buffered Channels and Worker Pools
1. Goroutine and Channel Example 线程和通道示例
package mainimport ("fmt""time")func write(ch chan int) {for i := 0; i < 5; i++ {ch <- i // 向通道写入 0-4 因为通道容量是2 需要读取数据才会进行下一步 否则一直在阻塞态fmt.Println("Successfully wrote", i, "to ch")}close(ch) // 关闭通道}func main() {ch := make(chan int, 2) // 创建一个容量为2的缓冲通道 通道容量大小会导致阻塞go write(ch)time.Sleep(2 * time.Second) // 模拟时间间隔for v := range ch {fmt.Println("Read value", v, "from ch") // 读取数据 goroutine继续运行time.Sleep(2 * time.Second)}// 并发的 goroutine 和通道的阻塞机制,write() 函数和 range ch 循环可以交替执行,使得循环不会一次执行完毕,而是在读取完所有值之后等待新的值出现,再次进行循环迭代。}// Successfully wrote 0 to ch// Successfully wrote 1 to ch// Read value 0 from ch// Successfully wrote 2 to ch// Read value 1 from ch// Successfully wrote 3 to ch// Read value 2 from ch// Successfully wrote 4 to ch// Read value 3 from ch// Read value 4 from ch
2. Deadlock 死锁
package mainimport ( "fmt")func main() { ch := make(chan string, 2)ch <- "naveen"ch <- "paul"ch <- "steve" // 其容量是2 但是写入三个 导致死锁fmt.Println(<-ch)fmt.Println(<-ch)}// fatal error: all goroutines are asleep - deadlock!// goroutine 1 [chan send]: // main.main() // /tmp/sandbox091448810/prog.go:11 +0x8d
3. Closing buffered channels 关闭通道
ch := make(chan int, 5)ch <- 6ch <- 9close(ch)n, open := <-chfmt.Printf("Received: %d, open: %t\n", n, open)n, open = <-chfmt.Printf("Received: %d, open: %t\n", n, open)n, open = <-chfmt.Printf("Received: %d, open: %t\n", n, open)// Received: 5, open: true // Received: 6, open: true // Received: 0, open: false
4. Length vs Capacity 长度和容量
ch := make(chan string, 3)ch <- "Like"ch <- "LiangXiaoQing"fmt.Println("capacity is", cap(ch))fmt.Println("length is", len(ch)) // 通道写入的个数fmt.Println("read value", <-ch)fmt.Println("new length is", len(ch))fmt.Println("read value", <-ch)fmt.Println("new length is", len(ch))// capacity is 3// length is 2// read value Like// new length is 1// read value LiangXiaoQing// new length is 0
5. WaitGroup
// Add() 添加任务// Done() 通知wait完成任务// Wait() 阻塞等待所有任务完成package mainimport ( "fmt""sync""time")func process(i int, wg *sync.WaitGroup) {fmt.Println("started Goroutine", i) // 3.打印 Goroutine 开始执行的信息time.Sleep(2 * time.Second) // 4.暂停 2 秒,模拟任务执行时间fmt.Printf("Goroutine %d ended\n", i) // 5.打印 Goroutine 执行结束的信息wg.Done() // 6.通知等待组任务已完成}func main() {no := 3var wg sync.WaitGroupfor i := 0; i < no; i++ {wg.Add(1) // 1.循环三次添加三次任务go process(i, &wg) // 2.每次传入当前i 0-2 及wg内存地址}wg.Wait() // 7.等待所有任务完成fmt.Println("All go routines finished executing")}// started Goroutine 1// started Goroutine 0// started Goroutine 2// Goroutine 2 ended// Goroutine 0 ended// Goroutine 1 ended// All go routines finished executing
6. Worker Pool Implementation 线程池
type Job struct { // Job 结构表示一个具有 ID 和随机数的作业。id intrandomno int}type Result struct { // Result 结构表示作业的结果,包括作业本身和数字各位数之和。job Jobsumofdigits int}var jobs = make(chan Job, 10) // jobs 是一个带有缓冲区大小为 10 的通道,用于传递作业。var results = make(chan Result, 10) // results 是一个带有缓冲区大小为 10 的通道,用于传递结果。func digits(number int) int { // digits 函数计算一个整数的各位数之和。sum := 0no := numberfor no != 0 { // 循环中,通过取模和除法操作,将数字的各位数相加。digit := no % 10sum += digitno /= 10}time.Sleep(2 * time.Second) // time.Sleep(2 * time.Second) 使函数暂停 2 秒钟,模拟一个耗时操作。return sum // 返回各位数之和。}func worker(wg *sync.WaitGroup) { // worker 函数是一个工作协程,用于处理作业。for job := range jobs { // 使用 range 循环从 jobs 通道接收作业。output := Result{job, digits(job.randomno)} // 通过调用 digits 函数计算作业的各位数之和。 将作业和结果封装为 Result 结构results <- output // 并发送到 results 通道。}wg.Done() // wg.Done() 声明一个任务已完成。}func createWorkerPool(noOfWorkers int) { // createWorkerPool 函数创建一个工作池,用于并发处理作业。var wg sync.WaitGroup // 创建一个 sync.WaitGroup 对象 wg,用于等待所有工作协程完成。for i := 0; i < noOfWorkers; i++ { // 使用 for 循环创建指定数量的工作协程。wg.Add(1) // 添加任务go worker(&wg) // 每个工作协程调用 worker 函数,并传递 &wg 作为参数。}wg.Wait() // wg.Wait() 等待所有工作协程完成。close(results) // 关闭 results 通道,表示所有结果已经发送完毕。}func allocate(noOfJobs int) { // allocate 函数用于生成指定数量的作业并发送到 jobs 通道。for i := 0; i < noOfJobs; i++ { // 使用 for 循环创建指定数量的作业。randomno := rand.Intn(999) // 生成一个随机数 randomno,范围在 0 到 999 之间。job := Job{i, randomno} // 创建一个 Job 结构体 jobjobs <- job // 并将其发送到 jobs 通道。}close(jobs) // 关闭 jobs 通道,表示所有作业已经发送完毕。}func result(done chan bool) { // result 函数用于接收并处理结果。for result := range results { // 使用 range 循环从 results 通道接收结果。fmt.Printf("Job id %d, input random no %d , sum of digits %d\n", result.job.id, result.job.randomno, result.sumofdigits)}done <- true}func main() {startTime := time.Now()noOfJobs := 10go allocate(noOfJobs) // 传入job id 0-99 random 0-999的随机数字 Job id 1, input random no 636done := make(chan bool)go result(done) // result线程一直等待results有值 如果有值则打印信息 传入true结束通道noOfWorkers := 10 // 控制线程池数量 createWorkerPool(noOfWorkers) // 把&wg sync.WaitGroup 类型变量的指针 传给 results<-done // 关闭通道endTime := time.Now()diff := endTime.Sub(startTime) // 计算时间差fmt.Println("total time taken", diff.Seconds(), "seconds")}// Job id 1, input random no 636, sum of digits 15 // Job id 0, input random no 878, sum of digits 23 // Job id 9, input random no 150, sum of digits 6 // ...// total time taken 20.01081009 seconds
二、Select
1. Example
package mainimport ("fmt""time")func server1(ch chan string) {time.Sleep(9 * time.Second)ch <- "From Server 1"}func server2(ch chan string) {time.Sleep(6 * time.Second)ch <- "From server 2"}func main() {output1 := make(chan string)output2 := make(chan string)go server1(output1)go server2(output2)select { // 使用select语句接收多个通道消息,select会接收最先准备好的通道接收操作case s1 := <-output1:fmt.Println(s1)case s2 := <-output2:fmt.Println(s2)}}// From server 2
2. Default case 默认选择
func process(ch chan string) {time.Sleep(1 * time.Second)ch <- "Process Successful"}func main() {ch := make(chan string)go process(ch)for { // for循环一直循环 每次循环休息1秒 直到v有值 主要看上面process函数睡眠睡觉 否则一直输出default的值time.Sleep(1000 * time.Microsecond)select {case v := <-ch:fmt.Println("Received value:", v)returndefault:fmt.Println("No value Received")}}// ....// No value Received//No value Received//No value Received//No value Received//Received value: Process Successful
3. Deadlock and default case 死锁与默认选择
func main() {ch := make(chan string)select {case v := <-ch:fmt.Println("Received value", v)default:fmt.Println("Default case executed")}}// Default case executed
4. Random selection 随机选择
package mainimport ( "fmt""time")func server1(ch chan string) { ch <- "from server1"}func server2(ch chan string) { ch <- "from server2"}func main() { output1 := make(chan string)output2 := make(chan string)go server1(output1)go server2(output2)time.Sleep(1 * time.Second)select { // 使用select语句接收多个通道消息,select会接收最先准备好的通道接收操作case s1 := <-output1:fmt.Println(s1)case s2 := <-output2:fmt.Println(s2)}}// From Server 1
三、Mutex
1. Program with a race condition 无锁示例
package mainimport ("fmt""sync")var x = 0func increment(wg *sync.WaitGroup) {x = x + 1wg.Done()}func main() {var w sync.WaitGroupfor i := 0; i < 1000; i++ {w.Add(1)go increment(&w)}w.Wait()fmt.Println("Final value of X", x)}// Final value of X 987 最终答案应该是1000 因为多线程全部都在操作x 导致有些操作未成功
2. Solving the race condition using a mutex 互斥锁解决方案
package mainimport ("fmt""sync")var x = 0func increment(wg *sync.WaitGroup, m *sync.Mutex) {m.Lock() // 上锁x = x + 1m.Unlock() // 释放锁 只有拿到锁才能操作x 否则一直等待wg.Done()}func main() {var w sync.WaitGroupvar m sync.Mutexfor i := 0; i < 1000; i++ {w.Add(1)go increment(&w, &m)}w.Wait()fmt.Println("Final value of X", x)}// Final value of X 1000
3. Solving the race condition using channel 通道解决方案
package main import ( "fmt""sync")var x = 0 func increment(wg *sync.WaitGroup, ch chan bool) { ch <- truex = x + 1<- chwg.Done() }func main() { var w sync.WaitGroupch := make(chan bool, 1) // 通道容量 1 所以每次都需要上一个结束 下一个才能进行操作for i := 0; i < 1000; i++ {w.Add(1) go increment(&w, ch)}w.Wait()fmt.Println("final value of x", x)}// Final value of x 1000
技术小白记录学习过程,有错误或不解的地方请指出,如果这篇文章对你有所帮助请点点赞收藏+关注谢谢支持 !!!