反质数:设f(n)表示n个约数的个数,如果对于任意x有0<x<n, f(x) < f(n),那么n就是一个反质数我们都知道对于任意一个数n,都可以用质数乘积的形式表示出来:x = p1^k1+p2^k2...pn^kn一个数n如果可以表示成 n = p1^k1 + p2^k2, 那么它的约数的个数就是 (k1+1)*(k2+1)::k1个p1,可以产生k1个约数,分别是p1^1, p1^2...p1^k1, 同理k2个p2那么这k1个约数与k2个约数分别相乘,又会得到k1*k2个约数总的约数的个数就是 k1*k2+k1+k2+1(还有就是1,也是n的一个约数,不要忘记) 
     1 #include<iostream> 
 2 #include<cstring> 
 3 #include<cstdio> 
 4 #include<algorithm>
 5 using namespace std;
 6 
 7 typedef long long LL;
 8 int p[]={2,3,5,7,11,13,17,19,23,29};
 9 
10 LL n, ans, cc;
11 
12 void dfs(int pos, int cnt, LL sum){
    //pos,p数据的索引;cnt,约数的个数;sum,当前反质数的值
13     if(cnt > cc){
14         ans = sum;
15         cc = cnt;
16     }
17     if(cnt == cc && ans > sum)
18          ans = sum;
19     if(pos>=10) return;
20     for(int i=1; ; ++i){
21         sum*=p[pos];
22         if(sum > n) break;
23         dfs(pos+1, cnt*(i+1), sum);
24     }
25 }
26 
27 int main(){
28     cin>>n;
29     ans = 0;
30     dfs(0, 1, 1);
31     cout<<ans<<endl;
32     return 0;
33 }