首先,我检测到图像右侧的20个黑框,然后将x和宽度添加到列表中:image = cv2.imread(args["image"])
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
(_, thresh) = cv2.threshold(gray, 220, 255,cv2.THRESH_BINARY)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 1))
closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
dilation = cv2.dilate(closed,None,iterations = 5)
(_,contours,_)=cv2.findContours(dilation.copy(),cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
sorted_rows = sorted(contours, key = cv2.contourArea, reverse = True)[1:21]
for idx,row in enumerate(sorted_rows):
(_x,y,w,h) = cv2.boundingRect(row)
rows.append([(y),(y+h)])
然后我检测到五列:(_, thresh) = cv2.threshold(gray, 127, 255,cv2.THRESH_BINARY)
closed = cv2.erode(thresh, None, iterations = 4)
(_,contours,_)=cv2.findContours(closed.copy(),cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
sorted_cols = sorted(contours, key = cv2.contourArea, reverse = True)[1:6]
for col in sorted_cols:
# add to list
(x,y,w,h) = cv2.boundingRect(col)
cols.append([(x),(x+w)])
接下来,我分别按照x和y的位置对这两个列表进行排序:cols = sorted(cols, key = lambda x: x[0])
rows = sorted(rows, key = lambda x: x[0])
然后我遍历columns列表和rows列表来构建交叉点的坐标,在那里我可以找到五个复选框count_iterations = 0
for col in cols:
for row in rows:
count_iterations +=1
crop = image[row[0]:row[1], col[0]: col[1]]
denoised = cv2.fastNlMeansDenoisingColored(crop,None,10,10,7,21)
edges = cv2.Canny(denoised,220,250)
closed = cv2.dilate(edges, None, iterations = 1)
(_,contours,_)= cv2.findContours(closed.copy(),cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
checkboxes = sorted(contours, key = cv2.contourArea, reverse = True)[:5]
crdn_checkboxes = []
for check_box in checkboxes:
crdn_checkboxes.append(cv2.boundingRect(check_box))
最后,我按像素的位置对它们进行排序,最后选中它们的一个:crdn_checkboxes = sorted(crdn_checkboxes, key = lambda x: x[0])
for idx, crdn in enumerate(crdn_checkboxes):
x,y,w,h = crdn
check_box = crop[y:y+h,x:x+w]
check_box_img_gray = cv2.cvtColor(check_box, cv2.COLOR_BGR2GRAY)
(_, thresh) = cv2.threshold(check_box_img_gray,200,255,cv2.THRESH_BINARY)
height,width = thresh.shape[:2]
tot_px = height * width
checked_box = cv2.countNonZero(thresh) / float(tot_px)
if checked_box < 0.6:
print "Found"