Python迷宫小游戏源程序包括两个文件maze.py和mazeGenerator.py,mazeGenerator.py实现迷宫地图的生成,程序运行截图:

mazeGenerator.py
import numpy as npimport randomimport copyclass UnionSet(object):    """    并查集实现,构造函数中的matrix是一个numpy类型    """    def __init__(self, arr):        self.parent = {pos: pos for pos in arr}        self.count = len(arr)    def find(self, root):        if root == self.parent[root]:            return root        return self.find(self.parent[root])    def union(self, root1, root2):        self.parent[self.find(root1)] = self.find(root2)class Maze(object):    """    迷宫生成类    """    def __init__(self, width=11, height=11):        assert width >= 5 and height >= 5, "Length of width or height must be larger than 5."        self.width = (width // 2) * 2 + 1        self.height = (height // 2) * 2 + 1        self.start = [1, 0]        self.destination = [self.height - 2, self.width - 1]        self.matrix = None        self.path = []    def print_matrix(self):        matrix = copy.deepcopy(self.matrix)        for p in self.path:            matrix[p[0]][p[1]] = 1        for i in range(self.height):            for j in range(self.width):                if matrix[i][j] == -1:                    print('□', end='')                elif matrix[i][j] == 0:                    print('  ', end='')                elif matrix[i][j] == 1:                    print('■', end='')            print('')    def generate_matrix_dfs(self):        # 地图初始化,并将出口和入口处的值设置为0        self.matrix = -np.ones((self.height, self.width))        self.matrix[self.start[0], self.start[1]] = 0        self.matrix[self.destination[0], self.destination[1]] = 0        visit_flag = [[0 for i in range(self.width)] for j in range(self.height)]        def check(row, col, row_, col_):            temp_sum = 0            for d in [[0, 1], [0, -1], [1, 0], [-1, 0]]:                temp_sum += self.matrix[row_ + d[0]][col_ + d[1]]            return temp_sum <= -3        def dfs(row, col):            visit_flag[row][col] = 1            self.matrix[row][col] = 0            if row == self.start[0] and col == self.start[1] + 1:                return            directions = [[0, 2], [0, -2], [2, 0], [-2, 0]]            random.shuffle(directions)            for d in directions:                row_, col_ = row + d[0], col + d[1]                if row_ > 0 and row_ < self.height - 1 and col_ > 0 and col_ < self.width - 1 and visit_flag[row_][                    col_] == 0 and check(row, col, row_, col_):                    if row == row_:                        visit_flag[row][min(col, col_) + 1] = 1                        self.matrix[row][min(col, col_) + 1] = 0                    else:                        visit_flag[min(row, row_) + 1][col] = 1                        self.matrix[min(row, row_) + 1][col] = 0                    dfs(row_, col_)        dfs(self.destination[0], self.destination[1] - 1)        self.matrix[self.start[0], self.start[1] + 1] = 0    # 虽然说是prim算法,但是我感觉更像随机广度优先算法    def generate_matrix_prim(self):        # 地图初始化,并将出口和入口处的值设置为0        self.matrix = -np.ones((self.height, self.width))        def check(row, col):            temp_sum = 0            for d in [[0, 1], [0, -1], [1, 0], [-1, 0]]:                temp_sum += self.matrix[row + d[0]][col + d[1]]            return temp_sum < -3        queue = []        row, col = (np.random.randint(1, self.height - 1) // 2) * 2 + 1, (                    np.random.randint(1, self.width - 1) // 2) * 2 + 1        queue.append((row, col, -1, -1))        while len(queue) != 0:            row, col, r_, c_ = queue.pop(np.random.randint(0, len(queue)))            if check(row, col):                self.matrix[row, col] = 0                if r_ != -1 and row == r_:                    self.matrix[row][min(col, c_) + 1] = 0                elif r_ != -1 and col == c_:                    self.matrix[min(row, r_) + 1][col] = 0                for d in [[0, 2], [0, -2], [2, 0], [-2, 0]]:                    row_, col_ = row + d[0], col + d[1]                    if row_ > 0 and row_ < self.height - 1 and col_ > 0 and col_ < self.width - 1 and self.matrix[row_][                        col_] == -1:                        queue.append((row_, col_, row, col))        self.matrix[self.start[0], self.start[1]] = 0        self.matrix[self.destination[0], self.destination[1]] = 0    # 递归切分算法,还有问题,现在不可用    def generate_matrix_split(self):        # 地图初始化,并将出口和入口处的值设置为0        self.matrix = -np.zeros((self.height, self.width))        self.matrix[0, :] = -1        self.matrix[self.height - 1, :] = -1        self.matrix[:, 0] = -1        self.matrix[:, self.width - 1] = -1        # 随机生成位于(start, end)之间的偶数        def get_random(start, end):            rand = np.random.randint(start, end)            if rand & 0x1 == 0:                return rand            return get_random(start, end)        # split函数的四个参数分别是左上角的行数、列数,右下角的行数、列数,墙壁只能在偶数行,偶数列        def split(lr, lc, rr, rc):            if rr - lr < 2 or rc - lc < 2:                return            # 生成墙壁,墙壁只能是偶数点            cur_row, cur_col = get_random(lr, rr), get_random(lc, rc)            for i in range(lc, rc + 1):                self.matrix[cur_row][i] = -1            for i in range(lr, rr + 1):                self.matrix[i][cur_col] = -1            # 挖穿三面墙得到连通图,挖孔的点只能是偶数点            wall_list = [                ("left", cur_row, [lc + 1, cur_col - 1]),                ("right", cur_row, [cur_col + 1, rc - 1]),                ("top", cur_col, [lr + 1, cur_row - 1]),                ("down", cur_col, [cur_row + 1, rr - 1])            ]            random.shuffle(wall_list)            for wall in wall_list[:-1]:                if wall[2][1] - wall[2][0] < 1:                    continue                if wall[0] in ["left", "right"]:                    self.matrix[wall[1], get_random(wall[2][0], wall[2][1] + 1) + 1] = 0                else:                    self.matrix[get_random(wall[2][0], wall[2][1] + 1), wall[1] + 1] = 0            # self.print_matrix()            # time.sleep(1)            # 递归            split(lr + 2, lc + 2, cur_row - 2, cur_col - 2)            split(lr + 2, cur_col + 2, cur_row - 2, rc - 2)            split(cur_row + 2, lc + 2, rr - 2, cur_col - 2)            split(cur_row + 2, cur_col + 2, rr - 2, rc - 2)            self.matrix[self.start[0], self.start[1]] = 0            self.matrix[self.destination[0], self.destination[1]] = 0        split(0, 0, self.height - 1, self.width - 1)    # 最小生成树算法-kruskal(选边法)思想生成迷宫地图,这种实现方法最复杂。    def generate_matrix_kruskal(self):        # 地图初始化,并将出口和入口处的值设置为0        self.matrix = -np.ones((self.height, self.width))        def check(row, col):            ans, counter = [], 0            for d in [[0, 1], [0, -1], [1, 0], [-1, 0]]:                row_, col_ = row + d[0], col + d[1]                if row_ > 0 and row_ < self.height - 1 and col_ > 0 and col_ < self.width - 1 and self.matrix[                    row_, col_] == -1:                    ans.append([d[0] * 2, d[1] * 2])                    counter += 1            if counter <= 1:                return []            return ans        nodes = set()        row = 1        while row < self.height:            col = 1            while col < self.width:                self.matrix[row, col] = 0                nodes.add((row, col))                col += 2            row += 2        unionset = UnionSet(nodes)        while unionset.count > 1:            row, col = nodes.pop()            directions = check(row, col)            if len(directions):                random.shuffle(directions)                for d in directions:                    row_, col_ = row + d[0], col + d[1]                    if unionset.find((row, col)) == unionset.find((row_, col_)):                        continue                    nodes.add((row, col))                    unionset.count -= 1                    unionset.union((row, col), (row_, col_))                    if row == row_:                        self.matrix[row][min(col, col_) + 1] = 0                    else:                        self.matrix[min(row, row_) + 1][col] = 0                    break        self.matrix[self.start[0], self.start[1]] = 0        self.matrix[self.destination[0], self.destination[1]] = 0    # 迷宫寻路算法dfs    def find_path_dfs(self, destination):        visited = [[0 for i in range(self.width)] for j in range(self.height)]        def dfs(path):            visited[path[-1][0]][path[-1][1]] = 1            if path[-1][0] == destination[0] and path[-1][1] == destination[1]:                self.path = path[:]                return            for d in [[0, 1], [0, -1], [1, 0], [-1, 0]]:                row_, col_ = path[-1][0] + d[0], path[-1][1] + d[1]                if row_ > 0 and row_ < self.height - 1 and col_ > 0 and col_ < self.width and visited[row_][                    col_] == 0 and self.matrix[row_][col_] == 0:                    dfs(path + [[row_, col_]])        dfs([[self.start[0], self.start[1]]])if __name__ == '__main__':    maze = Maze(51, 51)    maze.generate_matrix_kruskal()    maze.print_matrix()    maze.find_path_dfs(maze.destination)    print("answer", maze.path)    maze.print_matrix()maze.py
import tkinter as tkfrom Maze.mazeGenerator import Mazeimport copyimport mathdef draw_cell(canvas, row, col, color="#F2F2F2"):    x0, y0 = col * cell_width, row * cell_width    x1, y1 = x0 + cell_width, y0 + cell_width    canvas.create_rectangle(x0, y0, x1, y1, fill=color, outline=color, width=0)def draw_path(canvas, matrix, row, col, color, line_color):    # 列    if row + 1 < rows and matrix[row - 1][col] >= 1 and matrix[row + 1][col] >= 1:        x0, y0 = col * cell_width + 2 * cell_width / 5, row * cell_width        x1, y1 = x0 + cell_width / 5, y0 + cell_width    # 行    elif col + 1 < cols and matrix[row][col - 1] >= 1 and matrix[row][col + 1] >= 1:        x0, y0 = col * cell_width, row * cell_width + 2 * cell_width / 5        x1, y1 = x0 + cell_width, y0 + cell_width / 5    # 左上角    elif col + 1 < cols and row + 1 < rows and matrix[row][col + 1] >= 1 and matrix[row + 1][col] >= 1:        x0, y0 = col * cell_width + 2 * cell_width / 5, row * cell_width + 2 * cell_width / 5        x1, y1 = x0 + 3 * cell_width / 5, y0 + cell_width / 5        canvas.create_rectangle(x0, y0, x1, y1, fill=color, outline=line_color, width=0)        x0, y0 = col * cell_width + 2 * cell_width / 5, row * cell_width + 2 * cell_width / 5        x1, y1 = x0 + cell_width / 5, y0 + 3 * cell_width / 5    # 右上角    elif row + 1 < rows and matrix[row][col - 1] >= 1 and matrix[row + 1][col] >= 1:        x0, y0 = col * cell_width, row * cell_width + 2 * cell_width / 5        x1, y1 = x0 + 3 * cell_width / 5, y0 + cell_width / 5        canvas.create_rectangle(x0, y0, x1, y1, fill=color, outline=line_color, width=0)        x0, y0 = col * cell_width + 2 * cell_width / 5, row * cell_width + 2 * cell_width / 5        x1, y1 = x0 + cell_width / 5, y0 + 3 * cell_width / 5    # 左下角    elif col + 1 < cols and matrix[row - 1][col] >= 1 and matrix[row][col + 1] >= 1:        x0, y0 = col * cell_width + 2 * cell_width / 5, row * cell_width        x1, y1 = x0 + cell_width / 5, y0 + 3 * cell_width / 5        canvas.create_rectangle(x0, y0, x1, y1, fill=color, outline=line_color, width=0)        x0, y0 = col * cell_width + 2 * cell_width / 5, row * cell_width + 2 * cell_width / 5        x1, y1 = x0 + 3 * cell_width / 5, y0 + cell_width / 5    # 右下角    elif matrix[row - 1][col] >= 1 and matrix[row][col - 1] >= 1:        x0, y0 = col * cell_width, row * cell_width + 2 * cell_width / 5        x1, y1 = x0 + 3 * cell_width / 5, y0 + cell_width / 5        canvas.create_rectangle(x0, y0, x1, y1, fill=color, outline=line_color, width=0)        x0, y0 = col * cell_width + 2 * cell_width / 5, row * cell_width        x1, y1 = x0 + cell_width / 5, y0 + 3 * cell_width / 5    else:        x0, y0 = col * cell_width + 2 * cell_width / 5, row * cell_width + 2 * cell_width / 5        x1, y1 = x0 + cell_width / 5, y0 + cell_width / 5    canvas.create_rectangle(x0, y0, x1, y1, fill=color, outline=line_color, width=0)def draw_maze(canvas, matrix, path, moves):    """    根据matrix中每个位置的值绘图:    -1: 墙壁    0: 空白    1: 参考路径    2: 移动过的位置    """    for r in range(rows):        for c in range(cols):            if matrix[r][c] == 0:                draw_cell(canvas, r, c)            elif matrix[r][c] == -1:                draw_cell(canvas, r, c, '#525288')            elif matrix[r][c] == 1:                draw_cell(canvas, r, c)                draw_path(canvas, matrix, r, c, '#bc84a8', '#bc84a8')            elif matrix[r][c] == 2:                draw_cell(canvas, r, c)                draw_path(canvas, matrix, r, c, '#ee3f4d', '#ee3f4d')    for p in path:        matrix[p[0]][p[1]] = 1    for move in moves:        matrix[move[0]][move[1]] = 2def update_maze(canvas, matrix, path, moves):    canvas.delete("all")    matrix = copy.copy(matrix)    for p in path:        matrix[p[0]][p[1]] = 1    for move in moves:        matrix[move[0]][move[1]] = 2    row, col = movement_list[-1]    colors = ['#525288', '#F2F2F2', '#525288', '#F2F2F2', '#525288', '#F2F2F2', '#525288', '#F2F2F2']    if level > 2:        colors = ['#232323', '#252525', '#2a2a32', '#424242', '#434368', '#b4b4b4', '#525288', '#F2F2F2']    for r in range(rows):        for c in range(cols):            distance = (row - r) * (row - r) + (col - c) * (col - c)            if distance >= 100:                color = colors[0:2]            elif distance >= 60:                color = colors[2:4]            elif distance >= 30:                color = colors[4:6]            else:                color = colors[6:8]            if matrix[r][c] == 0:                draw_cell(canvas, r, c, color[1])            elif matrix[r][c] == -1:                draw_cell(canvas, r, c, color[0])            elif matrix[r][c] == 1:                draw_cell(canvas, r, c, color[1])                draw_path(canvas, matrix, r, c, '#bc84a8', '#bc84a8')            elif matrix[r][c] == 2:                draw_cell(canvas, r, c, color[1])                draw_path(canvas, matrix, r, c, '#ee3f4d', '#ee3f4d')def check_reach():    global next_maze_flag    if movement_list[-1] == maze.destination:        print("Congratulations! You reach the goal! The step used: {}".format(click_counter))        x0, y0 = width / 2 - 200, 30        x1, y1 = x0 + 400, y0 + 40        canvas.create_rectangle(x0, y0, x1, y1, fill='#F2F2F2', outline='#525288', width=3)        canvas.create_text(width / 2, y0 + 20,                           text="Congratulations! You reach the goal! Steps used: {}".format(click_counter),                           fill="#525288")        next_maze_flag = Truedef _eventHandler(event):    global movement_list    global click_counter    global next_maze_flag    global level    if not next_maze_flag and event.keysym in ['Left', 'Right', 'Up', 'Down']:        click_counter += 1        windows.title("Maze Level-{} Steps-{}".format(level, click_counter))        cur_pos = movement_list[-1]        ops = {'Left': [0, -1], 'Right': [0, 1], 'Up': [-1, 0], 'Down': [1, 0]}        r_, c_ = cur_pos[0] + ops[event.keysym][0], cur_pos[1] + ops[event.keysym][1]        if len(movement_list) > 1 and [r_, c_] == movement_list[-2]:            movement_list.pop()            while True:                cur_pos = movement_list[-1]                counter = 0                for d in [[0, 1], [0, -1], [1, 0], [-1, 0]]:                    r_, c_ = cur_pos[0] + d[0], cur_pos[1] + d[1]                    if c_ >= 0 and maze.matrix[r_][c_] == 0:                        counter += 1                if counter != 2:                    break                movement_list.pop()        elif r_ < maze.height and c_ < maze.width and maze.matrix[r_][c_] == 0:            while True:                movement_list.append([r_, c_])                temp_list = []                for d in [[0, 1], [0, -1], [1, 0], [-1, 0]]:                    r__, c__ = r_ + d[0], c_ + d[1]                    if c__ < maze.width and maze.matrix[r__][c__] == 0 and [r__, c__] != cur_pos:                        temp_list.append([r__, c__])                if len(temp_list) != 1:                    break                cur_pos = [r_, c_]                r_, c_ = temp_list[0]        update_maze(canvas, maze.matrix, maze.path, movement_list)        check_reach()    elif next_maze_flag:        next_maze_flag = False        movement_list = [maze.start]        click_counter = 0        maze.generate_matrix_kruskal()        maze.path = []        draw_maze(canvas, maze.matrix, maze.path, movement_list)        level += 1def _paint(event):    x, y = math.floor((event.y - 1) / cell_width), math.floor((event.x - 1) / cell_width)    if maze.matrix[x][y] == 0:        maze.find_path_dfs([x, y])        update_maze(canvas, maze.matrix, maze.path, movement_list)def _reset(event):    maze.path = []    update_maze(canvas, maze.matrix, maze.path, movement_list)if __name__ == '__main__':    # 基础参数    cell_width = 20    rows = 30    cols = 44    height = cell_width * rows    width = cell_width * cols    level = 1    click_counter = 0    next_maze_flag = False    windows = tk.Tk()    windows.title("迷宫小游戏")    canvas = tk.Canvas(windows, background="#F2F2F2", width=width, height=height)    canvas.pack()    maze = Maze(cols, rows)    movement_list = [maze.start]    maze.generate_matrix_kruskal()    draw_maze(canvas, maze.matrix, maze.path, movement_list)    canvas.bind("", _paint)    canvas.bind("", _reset)    canvas.bind_all("", _eventHandler)    windows.mainloop() 程序运行过程中遇到问题请在文末留言。