(pytorch-深度学习系列)pytorch实现对Fashion-MNIST数据集进行图像分类

pytorch实现对Fashion-MNIST数据集进行图像分类

导入所需模块:

import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import time
import sys

对数据集的操作(读取数据集):
由于像素值为0到255的整数,所以刚好是uint8所能表示的范围,包括transforms.ToTensor()在内的一些关于图片的函数就默认输入的是uint8型,若不是,可能不会报错但可能得不到想要的结果。所以,如果用像素值(0-255整数)表示图片数据,那么一律将其类型设置成uint8,避免不必要的bug
通过torchvision的torchvision.datasets来下载这个数据集。第一次调用时数据集目录不存在,会自动从网上获取数据。

mnist_train = torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST', train=True, download=True, transform=transforms.ToTensor())
mnist_test = torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST', train=False, download=True, transform=transforms.ToTensor())

获取标签:

def get_fashion_mnist_labels(labels):text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat','sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']return [text_labels[int(i)] for i in labels]

定义画图函数:

def use_svg_display():# 用矢量图显示display.set_matplotlib_formats('svg')def set_figsize(figsize=(3.5, 2.5)):use_svg_display()# 设置图的尺寸plt.rcParams['figure.figsize'] = figsizedef show_fashion_mnist(images, labels):use_svg_display()# 这里的_表示我们忽略(不使用)的变量_, figs = plt.subplots(1, len(images), figsize=(12, 12))for f, img, lbl in zip(figs, images, labels):f.imshow(img.view((28, 28)).numpy())f.set_title(lbl)f.axes.get_xaxis().set_visible(False)f.axes.get_yaxis().set_visible(False)plt.show()

展示数据集中的前10个样本:

X, y = [], []
for i in range(10):X.append(mnist_train[i][0])y.append(mnist_train[i][1])
show_fashion_mnist(X, get_fashion_mnist_labels(y))

PyTorch的DataLoader允许使用多进程来加速数据读取
通过参数num_workers来设置4个进程读取数据:

batch_size = 256
if sys.platform.startswith('win'):num_workers = 0  # 0表示不用额外的进程来加速读取数据
else:num_workers = 4
train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers)

初始化模型参数:

num_inputs = 784 # 784个样本
num_outputs = 10 # 分为10类W = torch.tensor(np.random.normal(0, 0.01, (num_inputs, num_outputs)), dtype=torch.float)
b = torch.zeros(num_outputs, dtype=torch.float)
# 模型参数梯度回调
W.requires_grad_(requires_grad=True)
b.requires_grad_(requires_grad=True) 

定义softmax运算:
softmax运算会先通过exp函数对每个元素做指数运算,再对exp矩阵同行元素求和,最后令矩阵每行各元素与该行元素之和相除。这样一来,最终得到的矩阵每行元素和为1且非负。因此,该矩阵每行都是合法的概率分布。softmax运算的输出矩阵中的任意一行元素代表了一个样本在各个输出类别上的预测概率。

def softmax(X):#对于随机输入,每个元素变成了非负数,且每一行和为1X_exp = X.exp()partition = X_exp.sum(dim=1, keepdim=True) # 按行求和return X_exp / partition  # 这里应用了广播机制,会自动对partition进行扩展到与X_exp尺度相同

定义模型:

def net(X): # 定义模型return softmax(torch.mm(X.view((-1, num_inputs)), W) + b)def cross_entropy(y_hat, y): # 交叉熵损失函数return - torch.log(y_hat.gather(1, y.view(-1, 1)))def accuracy(y_hat, y): # 定义准确率计算return (y_hat.argmax(dim=1) == y).float().mean().item()

这里讲一下为什么使用softmax可以将输出定在(0-9)这样的离散类别中

因为,模型中使用到的线性规划层:输出=输入*w+b
其中w是一个(输入,输出)维度的张量,b是一个(输出)维度的向量
根据矩阵运算,输入*w+b的结果就是一个向量,该向量列数为输出(也就是类别数),而softmax做的,就是将该向量的元素进行归一化处理,使得其变为概率向量,这样,该模型的输出就可以代表样本为某一类别的概率,其和为1.

训练模型:

num_epochs, lr = 5, 0.1def sgd(params, lr, batch_size):  # 随机梯度下降算法for param in params:param.data -= lr * param.grad / batch_size # 注意这里更改param时用的param.datadef evaluate_accuracy(data_iter, net):acc_sum, n = 0.0, 0for X, y in data_iter:acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()n += y.shape[0]return acc_sum / ndef train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size,params=None, lr=None, optimizer=None):for epoch in range(num_epochs):train_l_sum, train_acc_sum, n = 0.0, 0.0, 0for X, y in train_iter:y_hat = net(X)l = loss(y_hat, y).sum()# 梯度清零if optimizer is not None:optimizer.zero_grad() # 这里我们没有用到优化器,所以直接对参数进行梯度清零elif params is not None and params[0].grad is not None:for param in params:param.grad.data.zero_()l.backward()if optimizer is None:sgd(params, lr, batch_size)else:optimizer.step()  # 简洁实现将用到优化器这里train_l_sum += l.item()train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item()n += y.shape[0] test_acc = evaluate_accuracy(test_iter, net)print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'% (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, batch_size, [W, b], lr)

注意,这里的每一个train_iter是以batch_size个样本为实例的,所以每一个train_iter包含多个(tensor, type)组合。

训练完毕进行预测:

X, y = iter(test_iter).next()true_labels = get_fashion_mnist_labels(y.numpy())
pred_labels = get_fashion_mnist_labels(net(X).argmax(dim=1).numpy())
titles = [true + '\n' + pred for true, pred in zip(true_labels, pred_labels)]
show_fashion_mnist(X[0:9], titles[0:9])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/508000.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(pytorch-深度学习系列)使用softmax回归实现对Fashion-MNIST数据集进行分类-学习笔记

使用softmax回归实现对Fashion-MNIST数据集进行分类 import torch from torch import nn from torch.nn import init import numpy as np import sys读取数据集: mnist_train torchvision.datasets.FashionMNIST(root~/Datasets/FashionMNIST, trainTrue, downlo…

(pytorch-深度学习系列)pytorch实现多层感知机(手动定义模型)对Fashion-MNIST数据集进行分类-学习笔记

pytorch实现多层感知机对Fashion-MNIST数据集进行分类(手动定义模型) 多层感知机: 多层感知机在单层神经网络的基础上引入了一到多个隐藏层(hidden layer)。隐藏层位于输入层和输出层之间。 输入和输出个数分别为4和…

(pytorch-深度学习系列)pytorch实现多层感知机(自动定义模型)对Fashion-MNIST数据集进行分类-学习笔记

pytorch实现多层感知机(自动定义模型)对Fashion-MNIST数据集进行分类 导入模块: import torch from torch import nn from torch.nn import init import numpy as np定义数据集: class FlattenLayer(nn.Module): # 定义一个ten…

(pytorch-深度学习系列)pytorch避免过拟合-权重衰减的实现-学习笔记

pytorch避免过拟合-权重衰减的实现 首先学习基本的概念背景 L0范数是指向量中非0的元素的个数;(L0范数难优化求解) L1范数是指向量中各个元素绝对值之和; L2范数是指向量各元素的平方和然后求平方根。 权重衰减等价于 L2范数正则化(regular…

(pytorch-深度学习系列)pytorch避免过拟合-dropout丢弃法的实现-学习笔记

pytorch避免过拟合-dropout丢弃法的实现 对于一个单隐藏层的多层感知机,其中输入个数为4,隐藏单元个数为5,且隐藏单元hih_ihi​(i1,…,5i1, \ldots, 5i1,…,5)的计算表达式为: hiϕ(x1w1ix2w2ix3w3ix4w4ib…

(pytorch-深度学习系列)正向传播与反向传播-学习笔记

正向传播与反向传播 1. 正向传播 正向传播是指对神经网络沿着从输入层到输出层的顺序,依次计算并存储模型的中间变量(包括输出)。 假设输入是一个特征为x∈Rd\boldsymbol{x} \in \mathbb{R}^dx∈Rd的样本,且不考虑偏差项&#x…

(pytorch-深度学习系列)简单实现kaggle房价预测-学习笔记

实现kaggle房价预测 导入所需模块: %matplotlib inline import torch import torch.nn as nn import numpy as np import pandas as pdprint(torch.__version__) torch.set_default_tensor_type(torch.FloatTensor)读取数据集: (具体以自己…

(pytorch-深度学习系列)ResNet残差网络的理解-学习笔记

ResNet残差网络的理解 ResNet伴随文章 Deep Residual Learning for Image Recognition 诞生,该文章是MSRA何凯明团队在2015年ImageNet上使用的网络,在当年的classification、detection等比赛中,ResNet均获了第一名,这也导致了Res…

(pytorch-深度学习系列)pytorch构造深度学习模型-学习笔记

pytorch构造深度学习模型 1. 通过继承module类的方式来构造模型 Module类是nn模块里提供的一个模型构造类,是所有神经网络模块的基类。 可以继承基类并重构 __init()__函数和forward()forward()forward()函数的方式来构造模型。 以下是一个构造一个模型的例子&am…

(pytorch-深度学习系列)模型参数的初始化与访问操作-学习笔记

模型参数的初始化与访问操作 学习 如何初始化以及访问模型参数,以及如何在多层之间共享模型参数 首先定义一个含有单个隐藏层的多层感知机,使用默认方式初始化该模型的参数,并且进行一次前向计算: import torch from torch impo…

(pytorch-深度学习系列)pytorch实现自定义网络层,并自设定前向传播路径-学习笔记

pytorch实现自定义网络层,并自设定前向传播路径-学习笔记 1. 不包含模型参数的自定义网络层 首先我们自定义一个网络层, 定义一个网络层,使其不包含模型参数,并在forward()函数中进行运算: import torch from torc…

(pytorch-深度学习系列)读取和存储数据-学习笔记

读取和存储数据 我们可以使用pt文件存储Tensor数据: import torch from torch import nnx torch.ones(3) torch.save(x, x.pt)这样我们就将数据存储在名为x.pt的文件中了 我们可以从文件中将该数据读入内存: x2 torch.load(x.pt) print(x2)还可以存…

(pytorch-深度学习系列)pytorch使用GPU计算-学习笔记

pytorch使用GPU计算 在之前的blog中早已经讲过如何配置pytorch的GPU加速环境 查看GPU加速是否可用: import torch from torch import nnprint(torch.cuda.is_available()) # true 查看GPU是否可用print(torch.cuda.device_count()) #GPU数量, 1torch.…

(pytorch-深度学习系列)CNN二维卷积层-学习笔记

二维卷积层 在二维互相关运算中,卷积窗口从输入数组的最左上方开始,按从左往右、从上往下的顺序,依次在输入数组上滑动。当卷积窗口滑动到某一位置时,窗口中的输入子数组与核数组按元素相乘并求和,得到输出数组中相应…

(pytorch-深度学习系列)卷积神经网络中的填充(padding)和步幅(stride)

卷积神经网络中的填充(padding)和步幅(stride) 之前写过一篇blog,描述CNN网络层的输入和输入尺寸的计算关系,但是并没有描述的很全面,这里全面描述了影响输出尺寸的两个超参数padding和stride,查阅了相关资料,编码理解…

(pytorch-深度学习系列)CNN的多输入通道和多输出通道

CNN的多输入通道和多输出通道 之前的输入都视为二维数组,但是真实数据往往具有更高的维度,彩色图像有RGB三个颜色通道,那么这个图像(高为h,宽为w)可以表示为3∗h∗w3*h*w3∗h∗w的多维数组,一般…

(pytorch-深度学习系列)CNN中的池化层-学习笔记

CNN中的池化层 首先,池化(pooling)层的提出是为了缓解卷积层对位置的过度敏感性。 什么意思? 比如在图像边缘检测问题中,实际图像里,我们的目标物体不会总出现在固定位置,即使我们连续拍摄同…

(pytorch-深度学习系列)卷积神经网络LeNet-学习笔记

卷积神经网络LeNet 先上图:LeNet的网络结构 卷积(6个5∗5的核)→降采样(池化)(2∗2的核,步长2)→卷积(16个5∗5的核)→降采样(池化)(2∗2的核,步长2)→全连接16∗5∗5→120→全连接120→84→全连接84→10\begin{matrix}卷积 \\ (6个5*5的核…

(pytorch-深度学习系列)深度卷积神经网络AlexNet

深度卷积神经网络AlexNet 文字过多,但是重点已经标出来了 背景 在LeNet提出后的将近20年里,神经网络一度被其他机器学习方法超越,如支持向量机。虽然LeNet可以在早期的小数据集上取得好的成绩,但是在更大的真实数据集上的表现并…

(pytorch-深度学习系列)使用重复元素的网络(VGG)

使用重复元素的网络(VGG) VGG的名字来源于论文作者所在的实验室Visual Geometry Group,VGG提出了可以通过重复使用简单的基础块来构建深度模型的思路。 VGG Block(VGG 块) VGG块的组成规律是:连续使用数个相同的填充为1、窗口形…