通过printf从目标板到调试器的输出

最近在SEGGER的博客上看到Johannes Lask写的一篇关于在调试时使用printf函数从目标MCU输出信息到调试器的文章,自我感觉很有启发,特此翻译此文并推荐给各位同仁。当然限于个人水平,有不当之处恳请指正。原文网址:https://blog.segger.com/getting-printf-output-from-target-to-debugger/

 Erich Styger最近发布了一篇《关于如何使用ARM Cortex-M目标上的单线输出(SWO)添加控制台功能》的伟大教程。

这激发了我写一篇在嵌入式目标(包括SWO和RTT)上的调试输出(“printf”)实现的更普遍的文章。

从目标调试输出

有不同的方法来从目标应用程序获取调试输出。

自从早期嵌入式系统以来,已经有了硬件依赖的解决方案,如使用UART或USB CDC。但是应用程序可能已经使用了UART,CDC需要目标硬件上的USB堆栈和USB连接器。

第一个软件解决方案是semihosting。使用semihosting,CPU停止打印输出,并由调试器重新启动“幕后”操作。打印一个消息可能需要几毫秒到几百毫秒的时间,因为这是一个昂贵的操作。调试器需要意识到目标已经停止执行,读取寄存器和内存,写入内存,然后重新启动CPU。这意味着目标CPU在这段时间内不运行。因此,semihosting可以简单地不用于需要实时行为的应用,例如通信栈。另外,semihosting实现是依赖于调试器的,而使用semihosting的应用程序可能在没有连接调试器的情况下运行。

然后还有ARM的SWO跟踪端口和SEGGER的实时传输(RTT)。

单线输出

SWO是由ARM为Cortex-M3,M4和M7设备设计的单引脚接口。引脚可以使用标准调试连接器连接到调试探头,并与SWD接口(而不是JTAG)一起使用。目标MCU可以在CPU引脚上传输数据包,类似于UART TX引脚,时钟速率来自CPU时钟。在调试器上设置SWO需要知道CPU时钟速度。如果应用程序的某些部分在启动前必须在初始化之前进行输出,或者在应用程序运行时时钟速度发生变化,那么这一点尤为重要。SWO不会如semihosting发送输出那样停止CPU。通过SWO的输出速度取决于组态的SWO速度。数据分组,即调试输出分组,以特殊格式编码。这允许发送多达32个数据包类型(刺激),但也会导致一些协议开销,这将以10 MHz SWO速度将事情减慢到〜1.5 us / char。这意味着输出80个字符大约需要120个微秒。要在RTOS或中断程序中使用来自多个任务的SWO,在SWO输出期间应禁用中断,这可能会影响系统的实时行为。

尽管SWO最常用于打印调试消息。它也可用于记录中断进入/退出和功能进入/退出,定期对PC值或内存中的变量进行采样,或者用于事件通知。

Erich全面介绍了如何在调试消息中使用SWO,如何在目标上进行设置,以及如何在主机上获取输出。

实时传输

RTT是SEGGER的调试终端解决方案。它将SWO的优点与其他方法的特点相结合。RTT是一种仅用于软件的解决方案,而不是标准调试连接以外的目标设备上不需要额外的硬件。它可以与任何J-Link一起使用,即使使用诸如J-Link OB,OpenSDA或转换的ST-LINK等小型板载机型。

RTT允许非常高的传输速度,而不会影响目标的实时行为。没有协议开销,打印消息可以在一微秒或更短的时间内完成,基本上只需要做一个单个memcpy()的时间。由于RTT的速度非常快,所以输出可以通过锁定中断来保证线程安全,而这种中断对系统的实时行为影响最小。当目标应用程序正在运行时,输出消息由J-Link读取并传输到主机。

与UART类似,RTT是双向的。您可以从主机向目标应用程序发送输入。双向通信允许您控制目标系统,而无需任何其他输入设备。使用RTT可以实现全功能终端。

RTT实现源代码可以自由地在任何系统中使用,提供功能和自由。

在主机上使用RTT是灵活并且容易的。J-Link软件包括可以与任何调试工具并行使用的RTT Viewer,一个GUI。您还可以使用Telnet客户端连接到调试会话(端口19031)并与目标进行通信。一些调试器甚至直接集成RTT。Embedded Studio和独立调试器Ozone可以在其终端窗口中通过RTT显示目标输出,并且不需要任何其他工具。

概要

printf调用与不同实现的速度比较

在从嵌入式目标执行SWO调试输出之前,只能使用低效或依赖硬件的方法。

使用SWO ARM设计了一个快速的解决方案。它重量轻且快速,但具有一些缩写,因为它仅在某些Cortex-M器件上可用,需要额外的引脚连接到MCU,并且是单向的。

RTT结合了SWO的所有优点,并增加了更多功能。它比SWO更快,不仅限于Cortex-M,允许通过标准调试连接进行双向通信,并且在任何需要系统的实时情况下都是最不具有干扰性的。

当您可以使用RTT时,没有任何理由使用SWO。

欢迎关注:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/499479.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

小心使用tf.image.resize_images,填坑经验分享给你

上上周,我在一个项目上线前对模型进行测试时出现了问题,这个问题困扰了我近两周,终于找到了问题根源,做个简短总结分享给你,希望对大家有帮助。 问题描述: 线上线下测试结果不一致,且差异很大…

PID控制器开发笔记之十:步进式PID控制器的实现

对于一般的PID控制系统来说,当设定值发生较大的突变时,很容易产生超调而使系统不稳定。为了解决这种阶跃变化造成的不利影响,人们发明了步进式PID控制算法。 1、步进式PID的基本思想 所谓步进式PID算法,实际就是在设定值发生阶跃…

AutoML 与 Bayesian Optimization 概述

1. AutoML 概述 AutoML是指对于一个超参数优化任务(比如规定计算资源内,调整网络结构找到准确率最高的网络),尽量减少人为干预,使用某种学习机制,来调节这些超参数,使得目标问题达到最优。 这…

使用Eclipse进行Makefile项目

最近在MCU on Eclipse网站上看到Erich Styger所写的一篇有关在Eclipse中使用Makefile创建项目的文章,文章讲解清晰明了非常不错,所以呢没人将其翻译过来供各位同仁参考。当然限于个人水平,有不当之处恳请指正。原文网址:https://m…

Git commit 常用表情快速查询

git commit 的时候,添加表情符号可以更好的表明本次提交的性质,也更有趣。 常用表情符号如下: emoji emoji代码 commit说明 🎨 (调色板) :art: 改进代码结构/代码格式 ⚡️ (闪电) :zap: 提升性能 🐎 (赛马)…

C语言学习及应用笔记之一:C运算符优先级及使用问题

C语言中的运算符绝对是C语言学习和使用的一个难点,因为在2011版的标准中,C语言的运算符的数量超过40个,甚至比关键字的数量还要多。这些运算符有单目运算符、双目运算符以及三目运算符,又涉及到左结合和右结合的问题,真…

Docker用法整理

Docker教程推荐 两个不错的参考资料&#xff1a; https://yeasy.gitbooks.io/docker_practice/content/introduction/ https://www.cnblogs.com/bethal/p/5942369.html 镜像&#xff1a; 查看镜像 docker images ls 删除镜像 docker image rm <image id> 拉取镜像 …

使用FreeRTOS进行性能和运行时分析

在MCU on Eclipse网站上看到Erich Styger在2月25日发的博文&#xff0c;一篇关于使用FreeRTOS进行性能和运行分析的文章&#xff0c;本人觉得很有启发&#xff0c;特将其翻译过来以备参考。当然限于个人水平&#xff0c;有描述不当之处恳请指正。原文网址&#xff1a;https://m…

生成微信公众号对应二维码的两种简单方法

方法1 在浏览器中打开下面的链接 https://open.weixin.qq.com/qr/code?usernameName 其中Name替换为对应公众号的微信号 例如&#xff0c;我们打算生成公众号 AI算法联盟 的二维码 只需首先关注这个公众号 在其详细信息中&#xff0c;查找到微信号信息&#xff1a;AIReport…

在Amazon FreeRTOS V10中使用运行时统计信息

在MCU on Eclipse网站上看到Erich Styger在8月2日发的博文&#xff0c;一篇关于在Amazon FreeRTOS V10中使用运行时统计信息的文章&#xff0c;本人觉得很有启发&#xff0c;特将其翻译过来以备参考。原文网址&#xff1a;https://mcuoneclipse.com/2018/08/02/tutorial-using-…

github无法加载图片的解决办法

最近发现我的github上面项目README里面的图片全裂了&#xff0c;一直以为是github最近服务器不稳定。今天通过简单的查询&#xff0c;发现原来这个问题可以解决&#xff0c;但是不能永久有效&#xff0c;之后还会用到&#xff0c;因此记录在这里&#xff0c; 也分享给大家。 解…

leetcode 1.两数之和

题目 链接&#xff1a;https://leetcode-cn.com/problems/two-sum 给定一个整数数组 nums 和一个目标值 target&#xff0c;请你在该数组中找出和为目标值的那 两个 整数&#xff0c;并返回他们的数组下标。 你可以假设每种输入只会对应一个答案。但是&#xff0c;你不能重复…

C语言学习及应用笔记之二:C语言static关键字及其使用

C语言有很多关键字&#xff0c;大多关键字使用起来是很明确的&#xff0c;但有一些关键字却要相对复杂一些。我们这里要说明的static关键字就是如此&#xff0c;它的功能很强大&#xff0c;相应的使用也就更复杂。 一般来说static关键字的常见用法有三种&#xff1a;一是用作局…

μCUnit,微控制器的单元测试框架

在MCU on Eclipse网站上看到Erich Styger在8月26日发布的博文&#xff0c;一篇关于微控制器单元测试的文章&#xff0c;有很高的参考价值&#xff0c;特将其翻译过来以备学习。原文网址&#xff1a;https://mcuoneclipse.com/2018/08/26/tutorial-%CE%BCcunit-a-unit-test-fram…

leetcode No.15-16 三数之和相关问题

leetcode 15. 三数之和 题目 链接&#xff1a;https://leetcode-cn.com/problems/3sum 给定一个包含 n 个整数的数组 nums&#xff0c;判断 nums 中是否存在三个元素 a&#xff0c;b&#xff0c;c &#xff0c;使得 a b c 0 &#xff1f;找出所有满足条件且不重复的三元组…

PID控制器开发笔记之十一:专家PID控制器的实现

前面我们讨论了经典的数字PID控制算法及其常见的改进与补偿算法&#xff0c;基本已经覆盖了无模型和简单模型PID控制经典算法的大部。再接下来的我们将讨论智能PID控制&#xff0c;智能PID控制不同于常规意义下的智能控制&#xff0c;是智能算法与PID控制算法的结合&#xff0c…

leetcode No.123 买卖股票的最佳时机 III

题目 链接&#xff1a;https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-iii 给定一个数组&#xff0c;它的第 i 个元素是一支给定的股票在第 i 天的价格。 设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。 注意: 你不能同时参与多…

Modbus协议栈开发笔记之七:Modbus ASCII Slave开发

与Modbus RTU在串行链路上分为Slave和Master一样&#xff0c;Modbus ASCII也分为Slave和Master&#xff0c;这一节我们就来开发Slave。对于Modbus ASCII从站来说&#xff0c;需要实现的功能其实与Modbus RTU的Slave是一样的。其操作过程也是一样的。首先接收到主站的访问命令&a…

leetcode No.21 合并两个有序链表

题目 链接&#xff1a;https://leetcode-cn.com/problems/merge-two-sorted-lists 将两个有序链表合并为一个新的有序链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例&#xff1a; 输入&#xff1a;1->2->4, 1->3->4 输出&#xff1a;1-&…

Modbus协议栈开发笔记之八:Modbus ASCII Master开发

这一节我们来封装Modbus ASCII Master应用&#xff0c;Modbus ASCII主站的开发与RTU主站的开发是一致的。同样的我们也不是做具体的应用&#xff0c;而是实现ASCII主站的基本功能。我们将ASCII主站的功能封装为函数&#xff0c;以便在开发具体应用时调用。 对于ASCII主站我们主…