STM32F0使用LL库实现MS5536C通讯

在本次项目中,限于空间要求我们选用了STM32F030F4作为控制芯片。这款MCU不但封装紧凑,而且自带的Flash空间也非常有限,所以我们选择了LL库实现。在本文中我们说明一下,使用LL库实现MS5536C的SPI通讯。

1MS5536C简述

MS5536C是一个系列的高分辨率工厂校准压力传感器。该设备包括一个压阻式压力传感器和一个ADC,采用三线SPI接口。该设备以16位数据字的形式提供数字压力和温度信息。其结构图如下:

MS5536C具有64位的单独校准的补偿系数,允许高度精确的软件补偿过程传播和温度效应。4个字的位排序组合为6个有效系数,具体如下:

MS5536C中,压力数据是一个16为的数据,读取的时序需要在发送命令和接受数据时采用不同的时钟沿。

MS5536C中,温度数据是一个16为的数据,读取温度数据的时序与眼里数据一样,也需要在发送命令和接受数据时采用不同的时钟沿。

MS5536C中,修正系数是有4个字组成,其实是6个系数,前面已经介绍了它的格式,读取这几个数据的时序也需要在发送命令和接受数据时采用不同的时钟沿。字1和字3的时序图如下:

读取字2和字4的时序图如下:

此外,还有复位信号,担复位信号没有什么特别,只需按时序图实现就好。其时序图如下:

关于这几个时序图的软件实现我们会在后面给出。在这里,我们可以总结一下,对于MS5536C表压传感器,在MCU发送信号时,使用时钟上升沿;在MCU接收数据时,采用时钟下降沿。

2SPI通讯配置

MS5536C表压传感器采用的是SPI通讯,所以我们需要看看STM32F030F4中的SPI通讯。STM32F030F4中的SPI的结构如下:

要实现SPI通讯,需要对SPI的寄存器进行配置,主要是个寄存器:SPI控制寄存器1(SPIx_CR1)和SPI控制寄存器2(SPIx_CR2)。

SPI控制寄存器1(SPIx_CR1)的结构如下:

在SPIx_CR1中有几位是需要配置的:SSM,SSI,SPE,BR,MSTR,CPOL,CPHA等。SSM:软件从站管理,说的简单一点就是忽略NSS引脚信号,在我们的应用中需要置位。SSI:内部从站选择,在SSM置位的情况下才有效。SPE:SPI使能,这个是必须的,但配置需要注意,在后续我们还会说明。BR:波特率控制,用于设置时钟分频。MSTR主站选择,CPOL时钟极性,CPHA时钟相位不再多说。

SPI控制寄存器2(SPIx_CR2)的结构如下:

在SPI控制寄存器2(SPIx_CR2)中,有FRXTH,FIFO接收阈值;DS,SPI传送数据位数需要配置。

3、软件实现

在前面我们已经说明了SPI的配置和MS5536C表压传感器的通讯要求,接下来就根据我们的分析实现之。

首先来看SPI的配置,有一些配置可以通过LL库提供的初始化函数来完成。这部分我们需要给予相应的参数值然后调用初始化函数。还有一部分配置需要调用相应的函数来执行。具体配置如下:

/* SPI1 初始化配置 */
static void SPI1_Init_Configuration(void)
{/* SPI1 端口参数配置*/LL_SPI_InitTypeDef SPI_InitStruct = {0};LL_GPIO_InitTypeDef GPIO_InitStruct = {0};/* 相关外设时钟使能 */LL_APB1_GRP2_EnableClock(LL_APB1_GRP2_PERIPH_SPI1);LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_GPIOA);/**SPI1 GPIO配置:PA5   ------> SPI1_SCKPA6   ------> SPI1_MISOPA7   ------> SPI1_MOSI */GPIO_InitStruct.Pin = LL_GPIO_PIN_5;GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;GPIO_InitStruct.Alternate = LL_GPIO_AF_0;LL_GPIO_Init(GPIOA, &GPIO_InitStruct);GPIO_InitStruct.Pin = LL_GPIO_PIN_6;GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;GPIO_InitStruct.Alternate = LL_GPIO_AF_0;LL_GPIO_Init(GPIOA, &GPIO_InitStruct);GPIO_InitStruct.Pin = LL_GPIO_PIN_7;GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;GPIO_InitStruct.Alternate = LL_GPIO_AF_0;LL_GPIO_Init(GPIOA, &GPIO_InitStruct);/* SPI1 参数配置 */SPI_InitStruct.TransferDirection = LL_SPI_FULL_DUPLEX;SPI_InitStruct.Mode = LL_SPI_MODE_MASTER;SPI_InitStruct.DataWidth = LL_SPI_DATAWIDTH_8BIT;SPI_InitStruct.ClockPolarity = LL_SPI_POLARITY_LOW;SPI_InitStruct.ClockPhase = LL_SPI_PHASE_1EDGE;SPI_InitStruct.NSS = LL_SPI_NSS_SOFT;SPI_InitStruct.BaudRate = LL_SPI_BAUDRATEPRESCALER_DIV256;SPI_InitStruct.BitOrder = LL_SPI_MSB_FIRST;SPI_InitStruct.CRCCalculation = LL_SPI_CRCCALCULATION_DISABLE;SPI_InitStruct.CRCPoly = 7;LL_SPI_Init(SPI1, &SPI_InitStruct);LL_SPI_SetRxFIFOThreshold(SPI1,LL_SPI_RX_FIFO_TH_QUARTER);LL_SPI_SetStandard(SPI1, LL_SPI_PROTOCOL_MOTOROLA);LL_SPI_EnableNSSPulseMgt(SPI1);
}

配置成功后,控制寄存器的状态如下图所示:

这里需要说明一下的是使能SPI,如果只在初始化时使能,最后的结果可能是一项不到的。所以最好的做法是在每次实现数据发送前,检测SPI的状态,若没使能则调用LL_SPI_Enable(SPI1)使能SPI

关于MS5536C表压传感器,我们查看了时序图后其实很容易实现,只需要在下发命令和接收数据时,注意转换SPI的相位设定就可以了。我们在这里只列出读取温度和压力测量值的代码。

/* 读取测量数据 */
static uint16_t ReadMeasureData(MS5536cTypeDef *ms,uint16_t command)
{uint8_t txData[2];uint8_t rxData[2];uint16_t result=0;txData[0]=(uint8_t)(command>>8);txData[1]=(uint8_t)command;ms->ReadWriteMS(txData,rxData,2);ms->Delayms(23);ms->SetPhase(false);ms->Delayms(10);txData[0]=0x00;txData[1]=0x00;ms->ReadWriteMS(txData,rxData,2);result=(rxData[0]<<8)+rxData[1];ms->SetPhase(true);ms->Delayms(10);return result;
}

对于读取校准数据,读取寄存器,软件复位等都只需按时序图实现就可以了,这里不再详述。

4、总结

我们已经基于LL库实现了STM32F030F4和MS5536C表压传感器的代码,将其下在到目标板,监视器结果正确,如下图所示:

欢迎关注:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/499422.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

STM32F0使用LL库实现DMA方式AD采集

在本次项目中&#xff0c;限于空间要求我们选用了STM32F030F4作为控制芯片。这款MCU不但封装紧凑&#xff0c;而且自带的Flash空间也非常有限&#xff0c;所以我们选择了LL库实现。在本文中我们将介绍基于LL库的ADC的DMA采集方式。 1、概述 这次我们使用DMA方式实现对AD的采集…

STM32与宇电设备实现AI-BUS通讯

宇电的设备使用基于RS-485的自定义协议&#xff0c;协议本身比较简单&#xff0c;只有2条指令&#xff1a; 读&#xff1a;地址代号52H&#xff08;82&#xff09; 要读的参数代号00校验码 写&#xff1a;地址代号43H&#xff08;67&#xff09;要写的参数代号写入数低字节写…

FreeRTOS如何结束和重新启动调度程序

大多数主机或桌面系统&#xff08;比如Linux&#xff0c;Mac或Windows&#xff09;都有一个正常的用例&#xff0c;你可以在早上启动操作系统&#xff0c;然后在晚上关闭它&#xff0c;然后你就离开机器。嵌入式系统是不同的&#xff1a;他们没有参加&#xff0c;他们应该“永远…

先进过程控制之一:浅说APC

先进过程控制&#xff08;APC&#xff09;技术作为在生产装置级的信息化应用&#xff0c;在优化装置的控制水平和提高生产过程的管理水平的同时&#xff0c;还为企业创造了可观的经济效益。 1、什么是APC 先进过程控制&#xff0c;简称APC&#xff0c;并不是什么新概念。它仅…

STM32与多台MS5803压力传感器I2C通讯

MS5803压力传感器支持SPI和I2C总线通讯&#xff0c;拥有24位AD转换。能够同时获得压力值和温度值&#xff0c;其中压力测量范围为10-1100mbar&#xff0c;温度的测量范围是-40-85摄氏度。各引脚功能及参数如下&#xff1a; 传感器内部结构图如下&#xff1a; 通讯协议的选择通过…

STM32F0使用LL库实现SHT70通讯

在本次项目中&#xff0c;限于空间要求我们选用了STM32F030F4作为控制芯片。这款MCU不但封装紧凑&#xff0c;而且自带的Flash空间也非常有限&#xff0c;所以我们选择了LL库实现。本篇我们将基于LL库采用模拟I2C接口的方式实现温湿度采集。 1、SHT70简述 SHT70是一款集温湿度…

STM32F0使用LL库实现PWM输出

在本次项目中&#xff0c;限于空间要求我们选用了STM32F030F4作为控制芯片。这款MCU不但封装紧凑&#xff0c;而且自带的Flash空间也非常有限&#xff0c;所以我们选择了LL库实现。本文我们将说明如何通过LL库实现PWM信号的输出。 1、概述 我们知道STM32的TIM计时器可以输出P…

STM32F0使用LL库实现Modbus通讯

在本次项目中&#xff0c;限于空间要求我们选用了STM32F030F4作为控制芯片。这款MCU不但封装紧凑&#xff0c;而且自带的Flash空间也非常有限&#xff0c;所以我们选择了LL库实现。本篇将说明基于LL实现USART通讯。 1、概述 我们想要实现基于RS485的Modbus通讯实际就是基于US…

STM32基于SPI和AD7192的数据采集

在开发臭氧发生器的时&#xff0c;我们需要一个高分辨率的AD采集&#xff0c;于是选择了AD7192&#xff0c;选择这款ADC的原因比较简单。首先它是24位的符合我们的精度要求&#xff1b;其次它自带时钟&#xff0c;便于节省空间&#xff1b;第三它有4路单端或2路差分输入&#x…

Modbus协议栈实现Modbus RTU多主站支持

前面我们已经详细讲解过Modbus协议栈的开发过程&#xff0c;并且利用协议栈封装了Modbus RTU主站和从站&#xff0c;Modbus TCP服务器与客户端&#xff0c;Modbus ASCII主站与从站应用。但在使用过程中&#xff0c;我们发现一些使用不便和受限的地方&#xff0c;所以我们就想要…

STM32基于AD5663的UV灯电压控制

在开发臭氧发生器的时&#xff0c;我们使用UV灯来实现臭氧的产生。而UV灯的强度决定了臭氧产生的浓度&#xff0c;UV灯的光强则与其控制电压密切相关。所以我们要控制产生的臭氧的浓度就需要调节其控制电压。我们选择了AD5663这一模拟量输出模块来实现这一点。 1、AD5663简介 …

实现Modbus ASCII多主站应用

前面我们已经分析了Modbus RTU的更新设计和具体实现&#xff08;如果不清楚可查看前一篇文章&#xff09;。其实Modbus ASCII与Modbus RTU都是基于串行链路实现的&#xff0c;所以有很多的共同点&#xff0c;基于此&#xff0c;这篇文章我们只讨论与Modbus RTU所不同的部分。 …

STM32一种基于NTC的控温电路及软件实现

NTC&#xff08;Negative Temperature Coefficient&#xff09;是一种随温度上升时&#xff0c;电阻值呈指数关系减小的热敏电阻。应用广泛&#xff0c;最近我们就采用了NTC来控制加热并测温&#xff0c;并达到了预期的效果。 1、硬件设计 我们使用三极管作为加热元件&#x…

STM32利用光敏二极管实现光度测量

最近我们在开发臭氧发生器时&#xff0c;需要监测生成的臭氧的浓度&#xff0c;于是想到使用光度计来测量。因为不同浓度的臭氧对管的吸收作用是不相同的&#xff0c;于是检测光照强度的变化就可以得到相应的浓度数据。 1、硬件设计 此次光照度检测我们选用了S1336-5BQ光电点二…

STM32的ADC通道间干扰的问题

最近我们在开发一个项目时&#xff0c;用到了MCU自带的ADC&#xff0c;在调试过程中发现通道之间村在相互干扰的问题。以前其实也用过好几次&#xff0c;但要求都不高所以没有太关注&#xff0c;此次因为物理量的量程较大&#xff0c;所以看到了变化。 首先来说明一下此次的软…

实现Modbus TCP多网段客户端应用

对于Modbus TCP来说与Modbus RTU和Modbus ASCII有比较大的区别&#xff0c;因为它是运行于以太网链路之上&#xff0c;是运行于TCP/IP协议之上的一种应用层协议。在协议栈的前两个版本中&#xff0c;Modbus TCP作为客户端时也存在一些局限性。我们将对这些不足作一定更新。 1、…

改进初学者的PID-介绍

最近看到了Brett Beauregard发表的有关PID的系列文章&#xff0c;感觉对于理解PID算法很有帮助&#xff0c;于是将系列文章翻译过来&#xff01;在自我提高的过程中&#xff0c;也希望对同道中人有所帮助。作者Brett Beauregard的原文网址&#xff1a;http&#xff1a;//brettb…

改进初学者的PID-采样时间

最近看到了Brett Beauregard发表的有关PID的系列文章&#xff0c;感觉对于理解PID算法很有帮助&#xff0c;于是将系列文章翻译过来&#xff01;在自我提高的过程中&#xff0c;也希望对同道中人有所帮助。作者Brett Beauregard的原文网址&#xff1a;http&#xff1a;//brettb…

改进初学者的PID-微分冲击

最近看到了Brett Beauregard发表的有关PID的系列文章&#xff0c;感觉对于理解PID算法很有帮助&#xff0c;于是将系列文章翻译过来&#xff01;在自我提高的过程中&#xff0c;也希望对同道中人有所帮助。作者Brett Beauregard的原文网址&#xff1a;http&#xff1a;//brettb…

LwIP应用开发笔记之一:LwIP无操作系统基本移植

现在&#xff0c;TCP/IP协议的应用无处不在。随着物联网的火爆&#xff0c;嵌入式领域使用TCP/IP协议进行通讯也越来越广泛。在我们的相关产品中&#xff0c;也都有应用&#xff0c;所以我们结合应用实际对相关应用作相应的总结。 1、技术准备 我们采用的开发平台是STM32F407…