改进初学者的PID-修改整定参数

最近看到了Brett Beauregard发表的有关PID的系列文章,感觉对于理解PID算法很有帮助,于是将系列文章翻译过来!在自我提高的过程中,也希望对同道中人有所帮助。作者Brett Beauregard的原文网址:http://brettbeauregard.com/blog/2011/04/improving-the-beginner%E2%80%99s-pid-tuning-changes/

 

1、问题

对于任何可靠的PID算法,拥有在系统运行时更改整定参数的能力都是必须的。

如果你试图在系统运行时改变整定参数,在初学PID的人看来会显得有点疯狂。让我们看看这是为什么?以下是初学者的 PID 在上述参数更改前后的状态:

因此,我们可以立即将这种差异归咎于积分项(或“I项”)。只有当参数发生变化时,它才会发生剧烈的变化。为什么会这样?这与初学积分的人对积分的理解有关:

这种解释在 Ki 被改变之前都是可以正常工作的。然后,你突然把这个新的 Ki 乘以你积累的整个误差总和。这不是我们想要的!我们只想影响事情后续的发展。

2、解决方案

有几种方法可以处理这个问题。我在上一个库中使用的方法是重新缩放偏差累计。Ki 翻了一倍?或者把偏差累计削减一半。这可以避免积分项撞击,并且也能工作的很好。不过,这有点笨拙,我想出了更优雅的东西。(我不可能是第一个想到这个问题,但我确实是一个人想到的。这算数!)

这个方案需要一个小的基本代数 (还是微积分?)

我们不是让 Ki 处在积分之外,而是把它带到里面。看起来我们视乎什么都没做,但我们会看到,在实践中,这带来了很大的变化。

现在,我们把误差乘以那个时候的Ki。然后我们存储它的和。当Ki发生变化时,没有任何变化,因为所有旧的Ki都已经“存在银行”了。我们得到一个平稳的转换,没有额外的数学运算。这可能会让我成为一个极客,但我觉得这很性感。

3、代码

/*working variables*/
unsigned long lastTime;
double Input,Output,Setpoint;
double ITerm,lastInput;
double kp,ki,kd;
int SampleTime = 1000;//1 sec
void Compute()
{unsigned long now = millis();int timeChange = (now - lastTime);if(timeChange>=SampleTime){/*Compute all the working error variables*/double error = Setpoint - Input;ITerm += (ki * error);double dInput = (Input - lastInput);/*Compute PID Output*/Output = kp * error + ITerm - kd * dInput;/*Remember some variables for next time*/lastInput = Input;lastTime = now;}
}void SetTunings(double Kp,double Ki,double Kd)
{double SampleTimeInSec = ((double)SampleTime)/1000;kp = Kp;ki = Ki * SampleTimeInSec;kd = Kd / SampleTimeInSec;
}void SetSampleTime(int NewSampleTime)
{if (NewSampleTime > 0){double ratio  = (double)NewSampleTime/ (double)SampleTime;ki *= ratio;kd /= ratio;SampleTime = (unsigned long)NewSampleTime;}
}

因此,我们用复合积分项变量替换了 [第4行]偏差求和变量。它计算 Ki * 偏差,而不仅仅是偏差 [第15行]。此外,由于 Ki 现在被隐藏在积分项中,因此它将从主 PID 计算 [第19行] 中删除。

4、结果

那么,这是如何解决问题的。在修改Ki之前,它重新计算了所有偏差的总和;我们看到的每一个偏差值。有了这段代码,之前的偏差将保持不变,而新的Ki只会影响事情的进展,这正是我们想要的。

译注:对于本篇讨论的修改整定参数对积分项的影响问题。采用位置式PID公式确实存在这一问题,作者的解决方式也很赞。因为这就是增量式PID积分项的默认处理方式。所以如果采用增量式PID就不会存在这个问题了。

欢迎关注:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/499401.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

改进初学者的PID-积分饱和

最近看到了Brett Beauregard发表的有关PID的系列文章,感觉对于理解PID算法很有帮助,于是将系列文章翻译过来!在自我提高的过程中,也希望对同道中人有所帮助。作者Brett Beauregard的原文网址:http://brettb…

改进初学者的PID-手自动切换

最近看到了Brett Beauregard发表的有关PID的系列文章,感觉对于理解PID算法很有帮助,于是将系列文章翻译过来!在自我提高的过程中,也希望对同道中人有所帮助。作者Brett Beauregard的原文网址:http://brettb…

改进初学者的PID-初始化

最近看到了Brett Beauregard发表的有关PID的系列文章,感觉对于理解PID算法很有帮助,于是将系列文章翻译过来!在自我提高的过程中,也希望对同道中人有所帮助。作者Brett Beauregard的原文网址:http://brettb…

如何优化代码和RAM大小

如果供应商为我自己的项目提供了一个起点,那就太好了。工作blinky始终是一个伟大的首发。方便总是有代价,而且“blinky”就是夸大“切换GPIO引脚”的代码大小。对于具有少量RAM和FLASH的设备,这可能会引起关注:如果blinky占用那么…

改进初学者的PID-正反作用

最近看到了Brett Beauregard发表的有关PID的系列文章,感觉对于理解PID算法很有帮助,于是将系列文章翻译过来!在自我提高的过程中,也希望对同道中人有所帮助。作者Brett Beauregard的原文网址:http://brettb…

改进初学者的PID-测量的比例介绍

最近看到了Brett Beauregard发表的有关PID的系列文章,感觉对于理解PID算法很有帮助,于是将系列文章翻译过来!在自我提高的过程中,也希望对同道中人有所帮助。作者Brett Beauregard的原文网址:http://brettb…

改进初学者的PID-测量的比例编码

最近看到了Brett Beauregard发表的有关PID的系列文章,感觉对于理解PID算法很有帮助,于是将系列文章翻译过来!在自我提高的过程中,也希望对同道中人有所帮助。作者Brett Beauregard的原文网址:http://brettb…

PID:我应该何时计算积分项?

最近看到了Brett Beauregard发表的有关PID的系列文章,感觉对于理解PID算法很有帮助,于是将系列文章翻译过来!在自我提高的过程中,也希望对同道中人有所帮助。作者Brett Beauregard的原文网址:http://brettb…

Arduino PID自整定库

最近看到了Brett Beauregard发表的有关PID的系列文章,感觉对于理解PID算法很有帮助,于是将系列文章翻译过来!在自我提高的过程中,也希望对同道中人有所帮助。作者Brett Beauregard的原文网址:http://brettb…

LwIP应用开发笔记之二:LwIP无操作系统UDP服务器

前面我们已经完成了LwIP协议栈基于逻辑的基本移植,在这一节我们将以RAW API来实现UDP服务器。 1、UDP协议简述 UDP协议全称是用户数据报协议,在网络中它与TCP协议一样用于处理数据包,是一种无连接的协议。在OSI模型中,处于传输层…

LwIP应用开发笔记之三:LwIP无操作系统UDP客户端

前一节我们实现了基于RAW API的UDP服务器,在接下来,我们进一步利用RAW API实现UDP客户端。 1、UDP协议简述 UDP协议全称是用户数据报协议,在网络中它与TCP协议一样用于处理数据包,是一种无连接的协议。在OSI模型中,处…

LwIP应用开发笔记之四:LwIP无操作系统TFTP服务器

前面我们已经实现了UDP的回环客户端和回环服务器的简单应用,接下来我们实现一个基于UDP的简单文件传输协议TFTP。 1、TFTP协议简介 TFTP是TCP/IP协议族中的一个用来在客户机与服务器之间进行简单文件传输的协议,提供不复杂、开销不大的文件传输服务。端…

LwIP应用开发笔记之五:LwIP无操作系统TCP服务器

前面我们实现了UDP服务器及客户端以及基于其上的TFTP应用服务器。接下来我们将实现同样广泛应用的TCP协议各类应用。 1、TCP简述 TCP(Transmission Control Protocol 传输控制协议)是一种面向连接的、可靠的、基于字节流的传输层通信协议,由…

LwIP应用开发笔记之六:LwIP无操作系统TCP客户端

上一篇我们基于LwIP协议栈的RAW API实现了一个TCP服务器的简单应用,接下来一节我们来实现一个TCP客户端的简单应用。 1、TCP简述 TCP(Transmission Control Protocol 传输控制协议)是一种面向连接的、可靠的、基于字节流的传输层通信协议&a…

LwIP应用开发笔记之七:LwIP无操作系统HTTP服务器

前面我们实现了TCP服务器和客户端的简单应用,接下来我们实现一个基于TCP协议的应用协议,那就是HTTP超文本传输协议。 1、HTTP协议简介 超文本传输协议(Hyper Text Transfer Protocol),简称HTTP,是一种基于…

LwIP应用开发笔记之八:LwIP无操作系统HTTP客户端

前面我们实现了TCP服务器和客户端的简单应用,接下来我们实现一个基于TCP协议的应用协议,那就是HTTP超文本传输协议 1、HTTP协议简介 超文本传输协议(Hyper Text Transfer Protocol),简称HTTP,是一种基于T…

LwIP应用开发笔记之九:LwIP无操作系统TELNET服务器

前面我们已经实现了基于RAW API的TCP服务器和客户端,也在此基础上实现了HTTP应用。接下来我们实现一个基于TCP的Telnet服务器应用。 1、Telnet协议简介 Telnet协议是TCP/IP协议族中的一员,是Internet远程登陆服务的标准协议和主要方式。它为用户提供了…

在ARM Cortex-M上实现FreeRTOS性能计数器

说明:本文翻译自Erich Styger的文章《Implementing FreeRTOS Performance Counters on ARM Cortex-M》,文章的权属属于原作者。 当使用像FreeRTOS这样的RTOS时,迟早要问一个问题:每个任务花费多少时间?基于Eclipse的M…

STM32学习及开发笔记八:采用主从计时器实现精确脉冲输出

脉冲信号用于设备控制是非常常见的,但在一些情况下,我们希望精确的控制脉冲的数量以实现对运动的精确控制。实现的方式也许有多种多样,但使用计时器来实现此类操作是人们比较容易想到的。 1、原理概述 我们知道在STM32平台上,使…

外设驱动库开发笔记0:EPD总体设计

在产品开发过程中,不可避免需要使用很多外部的元件及传感器,这些元器件也许是板载的,也许是板外的,但不管怎样,为其开发驱动程序都是必须的。每次都需要为这些元器件编写驱动程序。但每次重复编写调试很麻烦&#xff0…