在ARM Cortex-M上实现FreeRTOS性能计数器

说明:本文翻译自Erich Styger的文章《Implementing FreeRTOS Performance Counters on ARM Cortex-M》,文章的权属属于原作者。

当使用像FreeRTOS这样的RTOS时,迟早要问一个问题:每个任务花费多少时间?基于EclipseMCUXpresso IDE具有很好的视图,准确显示了此类信息:

                                                                        FreeRTOS运行时信息

为了使FreeRTOS(或任务列表视图)显示非常有用的信息,开发人员必须提供帮助,以便RTOS可以收集此信息。本文说明如何在ARM Cortex-M上完成此操作。

1、概述

不久前,我从处理器专家的角度讨论FreeRTOS的性能和运行时分析中的该主题。这次是关于使用本机” FreeRTOS和使用NXP MCUXpresso SDK,但是相同的原理将适用于Cortex-M处理器和微控制器的所有其他环境。至于FreeRTOS端口,我正在使用https://github.com/ErichStyger/McuOnEclipseLibrary中的端口,因为该端口已经存在所有需要的钩子。GitHub提供了本文中使用的所有文件和源。

2、如何工作

操作系统使用计数器来衡量任务执行时间。因此,在任务上下文切换时间,此计数器用于确定该任务使用的时间。重要的一点是,该时间不是绝对的(例如37毫秒),而是一些滴答声(例如241个滴答声)。RTOS知道总体上使用了多少滴答声RTOS知道系统中有多少个任务,因此它可以显示每个任务花费了总时间的百分比。另一个要注意的是,时间*包括*在中断中花费的时间。

这是一种非常简单但功能强大的估算任务执行时间的方法,通常就是您所需要的。它可以通过一种非常简单的方式来实现:使用一个使计数器递增的计时器和一个用于读取计数器值的函数。

要打开性能测量,我必须启用两个FreeRTOS配置设置:

#define configUSE_TRACE_FACILITY 1 /* 1: include additional structure members and functions to assist with execution visualization and tracing, 0: no runtime stats/trace */#define configGENERATE_RUN_TIME_STATS 1 /* 1: generate runtime statistics; 0: no runtime statistics */

要配置计时器并读取计数器,我必须使用两个宏来告诉函数名称:

#define configGET_RUNTIMER_COUNTER_VALUE_FROM_ISR   AppGetRuntimeCounterValueFromISR#define configCONFIGURE_TIMER_FOR_RUNTIME_STATS     AppConfigureTimerForRuntimeStats

3、使用滴答计数器

一种非常简单的衡量任务执行情况的方法是使用FreeRTOS滴答计数器本身。可以通过以下方式启用

#define configGENERATE_RUN_TIME_STATS_USE_TICKS     (1)

但是,这仅在任务执行时间超过RTOS滴答周期时才能测量任务执行时间。对于更快的任务,此方法没有用。根据Nyquist-Shannon采样定理,我最好使用2倍(更好:10倍)的测量频率。

4、使用Cortex-M周期计数器

实现该计数器的另一种方法是使用Cortex-M周期计数器,该计数器已在许多设备上实现,并给出了很好的结果。最好的是:无需中断或额外的计时器。可能的实现如下所示:

static uint32_t prevCycleCounter, cycleCntCounter = 0;void AppConfigureTimerForRuntimeStats(void) {cycleCntCounter = 0;McuArmTools_InitCycleCounter();prevCycleCounter = McuArmTools_GetCycleCounter();
}uint32_t AppGetRuntimeCounterValueFromISR(void) {uint32_t newCntr, diff;newCntr = McuArmTools_GetCycleCounter();diff = newCntr-prevCycleCounter;prevCycleCounter = newCntr;cycleCntCounter += diff>>12; /* scale down the counter */return cycleCntCounter;
}

5、使用定期定时器中断

标准方法是使用定期中断计时器,该计时器增加计数器。对于1 kHz滴答计时器,推荐的频率是FreeRTOS滴答计时器频率的10倍,在这种情况下为10 kHz100 us):

static uint32_t perfCounter = 0;#define PIT_BASEADDR       PIT
#define PIT_SOURCE_CLOCK   CLOCK_GetFreq(kCLOCK_BusClk)
#define PIT_CHANNEL        kPIT_Chnl_0
#define PIT_HANDLER        PIT0_IRQHandler
#define PIT_IRQ_ID         PIT0_IRQnvoid PIT_HANDLER(void) {PIT_ClearStatusFlags(PIT_BASEADDR, PIT_CHANNEL, kPIT_TimerFlag);perfCounter++;__DSB();
}void AppConfigureTimerForRuntimeStats(void) {pit_config_t config;PIT_GetDefaultConfig(&config);config.enableRunInDebug = false;PIT_Init(PIT_BASEADDR, &config);PIT_SetTimerPeriod(PIT_BASEADDR, PIT_CHANNEL, USEC_TO_COUNT(100U, PIT_SOURCE_CLOCK));PIT_EnableInterrupts(PIT_BASEADDR, PIT_CHANNEL, kPIT_TimerInterruptEnable);NVIC_SetPriority(PIT_IRQ_ID, 0);EnableIRQ(PIT_IRQ_ID);PIT_StartTimer(PIT_BASEADDR, PIT_CHANNEL);
}uint32_t AppGetRuntimeCounterValueFromISR(void) {return perfCounter;
}

6、摘要

FreeRTOS包含一项功能,可以测量相对于系统中其他任务的任务执行时间。我需要提供的是计时器或某种计数器的初始化例程,以及获取计数器值的方法。如果您对检查FreeRTOS计时的其他方式感兴趣,请查看Percepio TracealyzerSegger SystemView。如果您希望应用程序本身显示性能数据,请查看“ 使用FreeRTOS进行性能和运行时分析介绍的Shell / Commandline实现。

7、链接

  • GitHub上的项目:https : //github.com/ErichStyger/mcuoneclipse/tree/master/Examples/MCUXpresso/tinyK22/tinyK22_FreeRTOS
  • FreeRTOS的性能和运行时分析
  • 在Eclipse中更好的FreeRTOS调试
  • ARM SWO性能计数器
  • GitHub上的McuLib:https : //github.com/ErichStyger/McuOnEclipseLibrary
  • MCUXpresso IDE和SDK:https ://mcuxpresso.nxp.com

欢迎关注:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/499383.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

STM32学习及开发笔记八:采用主从计时器实现精确脉冲输出

脉冲信号用于设备控制是非常常见的,但在一些情况下,我们希望精确的控制脉冲的数量以实现对运动的精确控制。实现的方式也许有多种多样,但使用计时器来实现此类操作是人们比较容易想到的。 1、原理概述 我们知道在STM32平台上,使…

外设驱动库开发笔记0:EPD总体设计

在产品开发过程中,不可避免需要使用很多外部的元件及传感器,这些元器件也许是板载的,也许是板外的,但不管怎样,为其开发驱动程序都是必须的。每次都需要为这些元器件编写驱动程序。但每次重复编写调试很麻烦&#xff0…

外设驱动库开发笔记1:AD56xx系列DAC驱动

DAC在我们的项目中经常使用到,而使用最多的就是AD56xx系列,包括有单通道的AD5662、双通道的AD5623和AD5663、以及四通道的AD5624和AD5664等。出于方便复用的原因,我们设计并实现AD56xx系列DAC的驱动。 1、功能概述 AD56xx系列DAC属于nanoDA…

外设驱动库开发笔记2:AD8400系列数字电位器驱动

一些时候我们需要在系统使用过程中改变某些电路电阻值以达到改变设定的目的,这时候我们就会使用电位器。在我们使用数字控制电路时多选择数字电位器。在这一篇我们就来设计AD8400系列数字电位器的驱动。 1、功能概述 AD8400/AD8402/AD8403分别是单通道/双通道/四通…

外设驱动库开发笔记3:AD527x系列数字电位器驱动

在一些时候我们需要使用精度更高的数字电位器来实现我们的应用。我们经常使用AD527x系列数字电位器来实现这类应用。在通常情况下,AD527x系列数字电位器完全能够满足要求。为了减少重复工作,在这里我们将分系并实现AD527x系列数字电位器的驱动。 1、功能…

PID控制器改进笔记之一:改进PID控制器之参数动态调整

前面我们发布了一系列PID控制器相关的文章,包括经典PID控制器以及参数自适应的PID控制器。这一系列PID控制器虽说实现了主要功能,也在实际使用中取得了良好效果,但还有很多的细节部分可以改进以提高性能和灵活性。所以在这篇中我们来讨论改进…

外设驱动库开发笔记4:AD9833函数发生器驱动

很多时候我们需要输出某种函数信号,如方波、三角波、正弦波等,但想要获得这样的函数信号,不论是硬件电路还是软件实现,却并不是一件简单的事情。不过AD9833这类函数生成芯片可以简化这方面的操作,这一节我们就来设计并…

PID控制器改进笔记之二:改进PID控制器之手自动切换

前面我们发布了一系列PID控制器相关的文章,包括经典PID控制器以及参数自适应的PID控制器。这一系列PID控制器虽说实现了主要功能,也在实际使用中取得了良好效果,但还有很多的细节部分可以改进以提高性能和灵活性。所以在这篇中我们来讨论改进…

外设驱动库开发笔记5:AD7705系列ADC驱动

我们的经常需要采集一些精度要求较高的模拟信号,使用MCU集成的ADC难以达到要求、所以我们需要独立的ADC芯片。这一节我们就来设计并实现AD7705芯片的驱动、并探讨驱动的使用方法。 1、功能概述 AD7705/AD7706是用于低频测量的完整模拟前端。可以直接从传感器接收低…

PID控制器改进笔记之三:改进PID控制器之正反作用

前面我们发布了一系列PID控制器相关的文章,包括经典PID控制器以及参数自适应的PID控制器。这一系列PID控制器虽说实现了主要功能,也在实际使用中取得了良好效果,但还有很多的细节部分可以改进以提高性能和灵活性。所以在这篇中我们来讨论改进…

PID控制器改进笔记之四:改进PID控制器之设定值响应

前面我们发布了一系列PID控制器相关的文章,包括经典PID控制器以及参数自适应的PID控制器。这一系列PID控制器虽说实现了主要功能,也在实际使用中取得了良好效果,但还有很多的细节部分可以改进以提高性能和灵活性。所以在这篇中我们来讨论改进…

PID控制器改进笔记之五:改进PID控制器之串级设定

前面我们发布了一系列PID控制器相关的文章,包括经典PID控制器以及参数自适应的PID控制器。这一系列PID控制器虽说实现了主要功能,也在实际使用中取得了良好效果,但还有很多的细节部分可以改进以提高性能和灵活性。所以在这篇中我们来讨论改进…

滤波器开发之一:基于算数平均的平滑滤波器

信号采集是非常常见的需求,我们也总是希望采集到的数据是纯净而真实的,但这只是我们的希望。环境中存在太多的干扰信号,为了让我们得到的数据尽可能地接近实际值,我们需要降低这些干扰信号的影响,于是就有了滤波器的用…

外设驱动库开发笔记6:AD719x系列ADC驱动

前面我们讨论了AD7705这种ADC器件的驱动开发,在实际中我们使用更多的是AD719x系列的ADC芯片、包括有AD7191、AD7192和AD7193等。接下来我们就来设计并开发AD719x的驱动程序。 1、功能概述 AD7192是一款适合高精密测量应用的低噪声完整模拟前端,内置一个…

滤波器开发之二:基于算数平均的带阻平滑滤波器

信号采集是非常常见的需求,我们也总是希望采集到的数据是纯净而真实的,但这只是我们的希望。环境中存在太多的干扰信号,为了让我们得到的数据尽可能地接近实际值,我们需要降低这些干扰信号的影响,于是就有了滤波器的用…

滤波器开发之三:基于算数平均的阶进平滑滤波器

信号采集是非常常见的需求,我们也总是希望采集到的数据是纯净而真实的,但这只是我们的希望。环境中存在太多的干扰信号,为了让我们得到的数据尽可能地接近实际值,我们需要降低这些干扰信号的影响,于是就有了滤波器的用…

外设驱动库开发笔记7:LTC2400系列ADC驱动

有些时候我们需要对高精度的ADC来处理一些要求较高的模拟量采集。在处理温控器的过程中我们就使用到了LTC2400这款ADC。接下来我们就来设计并实现LTC2400的驱动。 1、功能概述 LTC2400是一个供电电压2.7V到5.5V的微功率24位转换器,集成了振荡器、4ppm INL和0.3ppm…

外设驱动库开发笔记8:GPIO模拟I2C驱动

I2C总线简单方便,是我们经常使用的一种总线。但有时候我们的MCU没有足够多的I2C控制器来实现我们的应用,所幸我可以使用普通的GPIO引脚来模拟低速的I2C总线通信。这一节我们就来实现使用软件通过普通GPIO操作I2C设备的驱动。 1、功能概述 I2C总线使用两…

嵌入式IAP开发笔记之一:面向STM32的BootLoader程序

对于很多人来说,BootLoader并不是一个陌生的词,甚至会经常用到它。因为在很多情况下我们都需要BootLoader程序,比如我们需要对系统在线升级时就需要它,还有当我们需要在外部存储器中运行程序时也需要用到它。在这里我们就来设计一…

外设驱动库开发笔记9:SHT1x系列温湿度传感器驱动

在我们的产品中,经常需要检测温湿度数据。有很多检测温湿度的方法和模块,其中SHT1x系列温湿度传感器就是一种成本较低使用方便的温湿度检测模块。下面我们就来说一说如何实现SHT1x系列温湿度传感器的驱动。 1、功能概述 SHT1x包括 SHT10, S…