CVPR 二十年,影响力最大的 10 篇论文!

文 | 二玖@极市平台

此前,极市盘点了图像分割在过去二十年中影响力最大的10篇论文,得到了许多开发者的支持。今天,我们将对计算机视觉领域三大顶会之一CVPR在近二十年来中产生的优秀论文进行一个全面的盘点与总结。CVPR是计算机视觉领域三大顶会中唯一一个年度学术会议。在快速更新迭代的计算机学科中,CVPR成为了计算机视觉领域的“顶级流量”。而在过去的这些年间,CVPR也有着许多的变化。在十多年前,CVPR不过1500人的参会规模,到了2019年参会人数已经超过了6500人,投稿数量也年年增长。虽然CVPR每年都会评选出最佳论文,但我们今天将从另一个角度来评选CVPR这二十年来的TOP10。即以Web of Science上显示的论文的引用量作为论文影响力的参考,排列出近二十年来影响力最大的十篇论文。接下来我们将依次进行介绍。

TOP10

Rethinking the Inception Architecture for Computer Vision

CVPR 2016

作者:Christian Szegedy,Vincent Vanhoucke,Sergey Ioffe,Jon Shlens,Zbigniew Wojna

机构:Google,伦敦大学

被引频次:4751

这篇论文又被称为Inception-v3,是GoogLeNet(Inception-v1)的延伸。GoogLeNet首次出现于2014年ILSVRC 比赛,并在当年的比赛中获得了冠军。Inception-v1的参数量远小于同期VGGNet,而性能却与之基本持平。相较于Inception-v1,Inception-v3做出的主要改进则是将卷积进行非对称拆分,以显著降低参数量,同时使得空间特征更为丰富。

TOP9

Densely Connected Convolutional Networks

CVPR 2017

作者:Gao Huang,Zhuang Liu,Laurens van der Maaten,Kilian Q. Weinberger

机构:康奈尔大学,清华大学,Facebook AI Research

被引频次:5181

DenseNet也是CVPR2017的最佳论文之一。在当时的神经网络模型都遇到一个问题:随着网路层数的加深,训练过程中的前传信号和梯度信号在经过很多层之后可能会逐渐消失。而DenseNet的核心思想解决了这一问题。它对前每一层都加一个单独的 shortcut,使得任意两层网络都可以直接“沟通”

而DenseNet的不足之处在于它的内存占用十分庞大。但瑕不掩瑜,DenseNet以其极具创新性的思路,不仅显著减轻了深层网络在训练过程中梯度消散而难以优化的问题,同时也取得了非常好的性能。

TOP8

You Only Look Once: Unified, Real-Time Object Detection

CVPR 2016

作者:Joseph Redmon,Santosh Divvala,Ross Girshick,Ali Farhadiq

机构:华盛顿大学,Allen Institute for AI,Facebook AI Research

被引频次:5295

这一篇论文就是在目标检测领域大名鼎鼎的YOLO。其最新的版本已经更新到了YOLOv5,且每一代的发布都能在行业内卷齐新的热潮。用YOLO的英文直译解释这一方法,就是只需要浏览一次就能识别出图中的物体的类别和位置。展开来说,YOLO的核心思想就是将目标检测转化为回归问题求解,并基于一个单独的端到端网络,完成从原始图像的输入到物体位置和类别的输出。这使得网络结构简单,且极大提升了检测速度。由于网络没有分支,所以训练也只需要一次即可完成。之后的很多检测算法都借鉴了这一思路。

TOP7

Rich feature hierarchies for accurate object detection and semantic segmentation

CVPR 2014

作者:Ross Girshick,Jeff Donahue,Trevor Darrell,Jitendra Malik

机构:加利福尼亚大学伯克利分校

被引频次:6876

这篇文章的排名在YOLO之前,既合理又巧妙。因为在YOLO之前,目标检测领域可以说是RCNN的世界。RCNN是将CNN引入目标检测的开山之作,它改变了目标检测领域的主要研究思路。紧随其后的系列文章,如Fast RCNN和Faster RCNN等,都代表了该领域当时的最高水准。在RCNN前经典的目标检测算法是使用滑动窗法依次判断所有可能的区域,而RCNN则采用Selective Search方法预先提取一系列较可能是物体的候选区域,之后仅在这些候选区域上提取特征,这使得检测的速度大大提升。

TOP6

Rapid object detection using a boosted cascade of simple features

CVPR 2001

作者:Paul Viola,Michael Jones

机构:三菱电气实验室 ,康柏剑桥研究实验室

被引频次:7033

这篇论文是本次盘点中最先发表的一篇,比其他九篇文章都早了十年左右,它在传统人脸检测中具有里程碑意义,因而本文提出的思想聚焦于传统的目标检测。这篇论文主要解决了三个问题:一是减少了计算特征的时间,二是构建了简单又很有效的单分支决策树分类器,最后是从简单到复杂把多个分类器级联,对可能包含人脸的区域进行重点检测,从而显著提升了检测速度。

TOP5

Going Deeper with Convolutions

CVPR 2015

作者:Christian Szegedy,Dragomir Anguelov, Dumitru Erhan,Vincent Vanhoucke,Yangqing Jia,Pierre Sermanet,Wei Liu,Scott Reed,Andrew Rabinovich

机构:Google,北卡罗来纳大学,密歇根大学发布时间:2015年

被引频次:7269

可能大家已经发现了亮点,这篇论文的系列工作在前面就出现过。这篇论文就是开辟Inception家族,并在CNN分类器发展史上留下浓墨重彩的一笔的GoogLeNet。在 Inception 出现之前,大部分流行 CNN 是将卷积层不断堆叠,让网络越来越深来得到更好的性能。而GoogLeNet 最大的特点就是使用 Inception 模块,并设计一种具有优良局部拓扑结构的网络,对输入图像并行地执行多个卷积运算或池化操作,将所有输出结果拼接为一个非常深的特征图。通过这种方式,GoogLeNet取得了非常惊艳的效果。

TOP4

ImageNet: A Large-Scale Hierarchical Image Database

CVPR 2009

作者:Jia Deng,Wei Dong,Richard Socher,Li-Jia Li,Kai Li,Li Fei-Fei

机构:普林斯顿大学

发布时间:2009年

被引频次:8222

ImageNet是AI女神李飞飞团队构建的计算机视觉领域非常著名的海量的带标注图像数据集。它在图像分类、目标分割和目标检测中都有着无法撼动的地位。ImageNet从 2007 年开始到 2009 年完成,有超过 1500 万张图片。可以毫不夸张的说,ImageNet 是图像处理算法的试金石。另外,从 2010 年起,每年 ImageNet 官方会举办挑战赛。Hinton团队提出的AlexNet也是在2012年的ImageNet挑战赛上一举成名,自此深度学习的热潮被点燃。

TOP3

Fully Convolutional Networks for Semantic Segmentation

CVPR 2015

作者:Jonathan Long,Evan Shelhamer,Trevor Darrell

发布时间:2015年

被引频次:9027

FCN在我们之前盘点的图像分割TOP10中就出现过,并高居第一位。作为语义分割的开山之作,无论是图像分割TOP1,还是CVPRTOP3,FCN都是当之无愧的。FCN所提出的全卷积网络的概念,开创了用FCN做实例和像素级别理解系列方法的先河。后续非常多的方法都受到了FCN的思路启发。FCN的提出为目标识别、检测与分割也都做出了巨大的贡献。

TOP2

Histograms of oriented gradients for human detection

CVPR 2005

作者:Navneet Dalal,Bill Triggs

被引频次:13389

这篇论文所提出的方法简称HOG,是一种是非常经典的图像特征提取方法,在行人识别领域被应用得尤为多。虽然文章已经发表了十五年,但仍然常常被人们用于最新工作的思路参考。HOG将图像分成小的连通区域,将它称为细胞单元,然后采集细胞单元中各像素点的梯度的或边缘的方向直方图,把这些直方图组合起来就可以构成特征描述器。

TOP1

Deep Residual Learning for Image Recognition

CVPR2016

作者:Kaiming He,Xiangyu Zhang,Shaoqing Ren,Jian Sun

被引频次:32065

这篇论文作为第一名,的确是当之无愧。作为CVPR2016的最佳论文,它所提出的ResNet不仅在计算机视觉领域,而是在深度学习领域中都带来了颠覆式影响。在当年,ResNet横扫 ImageNet 2015和COCO 榜单。也是从ResNet开始,神经网络在视觉分类任务上的性能第一次超越了人类。它也让当时第二次获得CVPR Best Paper的何恺明正式踏上了大神之路。最初 ResNet 的设计是用来处理深层 CNN 结构中梯度消失和梯度爆炸的问题,它将输入从卷积层的每个块添加到输出,让每一层更容易学习恒等映射,并且还减少了梯度消失的问题。而如今,残差模块已经成为几乎所有 CNN 结构中的基本构造

最后,我们来进行一下简要地总结。虽然本次盘点的是20年内CVPRTOP10,但是有超过半数的论文都是在近十年发表的,由此可以窥见深度学习在近年来的飞跃式发展。因此我们可以期待在未来的计算机视觉领域,一定会有更多更强的工作,为我们的科研与生活带来更快更好的提升。

后台回复关键词【入群

加入卖萌屋NLP/IR/Rec与求职讨论群

后台回复关键词【顶会

获取ACL、CIKM等各大顶会论文集!

 

[1].https://zhuanlan.zhihu.com/p/41691301

[2].https://www.zhihu.com/question/60109389/answer/203099761

[3].https://zhuanlan.zhihu.com/p/31427164

[4].https://zhuanlan.zhihu.com/p/23006190

[5].https://blog.csdn.net/weixin_37763809/article/details/88256828

[6].https://zhuanlan.zhihu.com/p/37505777

[7].https://zhuanlan.zhihu.com/p/77221549

[8].https://www.zhihu.com/question/433702668/answer/1617092684

[9].https://blog.csdn.net/zouxy09/article/details/7929348

[10].https://www.jiqizhixin.com/articles/2020-01-01

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/478715.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

DataMan-美团旅行数据质量监管平台实践

背景 数据,已经成为互联网企业非常依赖的新型重要资产。数据质量的好坏直接关系到信息的精准度,也影响到企业的生存和竞争力。Michael Hammer(《Reengineering the Corporation》一书的作者)曾说过,看起来不起眼的数据…

jupyter notebook切换到其他配置好的conda虚拟环境

1 手把手教你如何把jupyter notebook切换到其他配置好的conda虚拟环境 https://blog.csdn.net/weixin_41813895/article/details/84750990 2 Jupyter notebook切换Python环境 https://www.jianshu.com/p/8188c32a3a34

LeetCode 133. 克隆图(图的BFS/DFS)

1. 题目 给定无向连通图中一个节点的引用&#xff0c;返回该图的深拷贝&#xff08;克隆&#xff09;。图中的每个节点都包含它的值 val&#xff08;Int&#xff09; 和其邻居的列表&#xff08;list[Node]&#xff09;。 class Node { public:int val;vector<Node*> n…

七天搞定java接口自动化测试实战,一文搞定...

前言 无论是自动化测试还是自动化部署&#xff0c;撸码肯定少不了&#xff0c;所以下面的基于java语言的接口自动化测试&#xff0c;要想在业务上实现接口自动化&#xff0c;前提是要有一定的java基础。 如果没有java基础&#xff0c;也没关系。这里小编也为大家提供了一套jav…

Android自动化测试探索

前言 通常来说&#xff0c;我们开发完成产品之后&#xff0c;都是由测试组或者是我们自己点一点&#xff0c;基本上没有问题了就开始上线。但是&#xff0c;随着时间的堆叠&#xff0c;一款产品的功能也越来越多。这时&#xff0c;我们为了保证产品的质量&#xff0c;就需要在…

我整理了100道大厂算法岗面试必考题!

最近&#xff0c;很多小伙伴给我留言去面试被面试官吊打了&#xff0c;尤其是一些去面大厂的朋友&#xff0c;甚至一面都没有过...来&#xff0c;别灰心&#xff0c;我以过往经验告诉你大厂面试的通关秘诀&#xff01;对&#xff0c;就是算法&#xff01;大厂面试必考算法&…

参会邀请 - ISWC2020 | 第十九届国际语义网会议

第十九届国际语义网会议&#xff08;ISWC2020&#xff09;将于11月1日至6日远程召开。国际语义网会议是全球最重要的且最有影响力的国际学术会议&#xff0c;主要聚焦语义网&#xff0c;知识图谱&#xff0c;本体&#xff0c;链接数据等面向互联网的人工智能技术。国际语义网会…

美团配送资金安全治理之对账体系建设

前言 随着美团配送业务的飞速发展&#xff0c;单量已经达到千万级别&#xff0c;同时每天产生的资金额已经超过几千万&#xff0c;清结算系统在保证线上服务稳定可靠的前提下&#xff0c;如何系统化的保障资金安全是非常核心且重要的课题&#xff0c;配送清结算系统经过近3年的…

Githug第42关rebase_onto通关秘籍

Githug是一个用来了解、熟悉Git的一个非常好的游戏。 目前网站上收录的都是之前只有55关的解题方法&#xff0c;没有新增的rebase_onto这一关的内容。现在Githug一共有56关。现将新增的42关的解答内容更新如下&#xff1a; 第42关的题目如下: Name: rebase_onto Level: 41 D…

gcc安装不行的解决办法,需更新apt-get

上面应该更新apt-get 更新之后&#xff0c;重新安装gcc成功

LeetCode 138. 复制带随机指针的链表(哈希 / 深拷贝)

1. 题目 给定一个链表&#xff0c;每个节点包含一个额外增加的随机指针&#xff0c;该指针可以指向链表中的任何节点或空节点。 要求返回这个链表的深拷贝。 《剑指Offer》同题&#xff1a;面试题35. 复杂链表的复制 2. 解题 类似题目&#xff1a;LeetCode 1484. 克隆含随…

论文浅尝 - COLING2020 | 桥接文本和知识的多原型嵌入在少样本关系三元组抽取中的研究...

本文转载自公众号&#xff1a;浙大KG。 论文题目&#xff1a;Bridging Text and Knowledge with Multi-Prototype Embedding for Few-Shot Relational Triple Extraction本文作者&#xff1a;余海阳发表会议&#xff1a;COLING 2020论文链接&#xff1a;https://person.zju.…

惊呆!不用一张图片,却训出个图像识别SOTA?

文 &#xff5c; 橙橙子如果老板派给你一个任务&#xff0c;不使用一张图片&#xff0c;让你训练一个视觉预训练模型&#xff0c;你会不会觉得老板疯了。最近有一篇论文&#xff0c;不仅没用一张真实图片和标注&#xff0c;还训练出个媲美SOTA的效果&#xff0c;甚至超过了MoCo…

LeetCode 797. 所有可能的路径(DFS)

1. 题目 给一个有 n 个结点的有向无环图&#xff0c;找到所有从 0 到 n-1 的路径并输出&#xff08;不要求按顺序&#xff09; 二维数组的第 i 个数组中的单元都表示有向图中 i 号结点所能到达的下一些结点&#xff08;译者注&#xff1a;有向图是有方向的&#xff0c;即规定…

每天数百亿用户行为数据,美团点评怎么实现秒级转化分析?

背景 用户行为分析是数据分析中非常重要的一项内容&#xff0c;在统计活跃用户&#xff0c;分析留存和转化率&#xff0c;改进产品体验、推动用户增长等领域有重要作用。美团点评每天收集的用户行为日志达到数百亿条&#xff0c;如何在海量数据集上实现对用户行为的快速灵活分析…

EventBus1.0.1源码解析

很久没有更新过源码解析类文章&#xff0c;以下内容作为源码分析类的笔记。分析方法适用于其它源码分析。 分析工具说明 许久以来&#xff0c;阅读源代码最得力的工具就非Source Insight莫属了。然&#xff0c;后来微软出了一款轻量级但功能强大的IDE就没Source Insight什么事…

pycharm插件之SonarLint

pycharm插件之SonarLint pycharm插件之SonarLint 一、插件安装位置 1、在线安装插件 通过File—>Settings—>Plugins进行安装插件&#xff0c;然后只需要重新启动IEDA即可。 2、离线安装插件 通过 Settings > Plugins > Install Plugin from 离线安装&#x…

论文浅尝 - ICLR2020 | You Can Teach an Old Dog New Tricks!关于训练知识图谱嵌入

论文笔记整理&#xff1a;谭亦鸣&#xff0c;东南大学博士生。来源&#xff1a;ICLR2020链接&#xff1a;https://openreview.net/pdf?idBkxSmlBFvrKG embedding&#xff08;KGE&#xff09;模型的目标是学习知识图谱中实体和关系的向量表示。近年来众多的KGE方法被提出&#…

撑起百万亿参数模型想象力!英伟达发布新一代SuperPOD超算,AI算力新巅峰!

周一&#xff0c;黄教主又很淡定的在自家厨房里开完了GTC发布会。众所周知&#xff0c;NLP领域的模型一个比一个大&#xff0c;自从百亿参数的Google T5出来后&#xff0c;大部分AI研究者只能望着手里的蹩脚算力兴叹。如今动辄就是千亿、万亿参数模型&#xff0c;目前比较流行的…

每日优鲜小程序基础组件介绍

每日优鲜小程序基础组件介绍1.基础组件介绍2.基础组件的结构与作用3.基础组件的接入方法初次引入初始化更新与维护基础组件接入1.基础组件介绍 小程序基础组件基于每日优鲜主商城小程序业务实践演变而来。 基础组件的名称为&#xff1a;mini_app_base_module。 基础组件的项…