文章目录
- 1. 题目
- 2. 解题
- 2.1 DP
- 2.2 单调递增栈
1. 题目
给定一个仅包含 0 和 1 的二维二进制矩阵,找出只包含 1 的最大矩形,并返回其面积。
示例:
输入:
[["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]
]
输出: 6
来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/maximal-rectangle
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
2. 解题
类似题目:
LeetCode 221. 最大正方形(DP)
LeetCode 84. 柱状图中最大的矩形(单调递增栈)
2.1 DP
参考官方的解题思路:
class Solution {
public:int maximalRectangle(vector<vector<char>>& mat) {if(mat.empty())return 0;int i, j, minL, maxR, maxarea = 0;int r = mat.size(), c = mat[0].size();vector<vector<int>> left(r,vector<int>(c,0));vector<vector<int>> right(r,vector<int>(c,c));vector<vector<int>> height(r,vector<int>(c,0));for(i = 0; i < r; i++) {//填写left,相连的1,先到最高,然后最左侧的下标minL = 0;for(j = 1; j < c; j++){if(i == 0)//第一行{if(mat[i][j] == '1'){if(mat[i][j-1] == '0')minL = j;//左边0,当前1,需要更新最左边的边界minLleft[i][j] = minL;}}else//剩余行{if(mat[i][j] == '1'){if(mat[i][j-1] == '0')minL = j;left[i][j] = max(minL,left[i-1][j]);//跟上面的行,比较,取大}}}maxR = c;for(j = c-2; j >= 0; j--){if(i == 0)//第一行{if(mat[i][j] == '1'){if(mat[i][j+1] == '0')maxR = j+1;//右边0,当前1,更新最右边的边界maxRright[i][j] = maxR;}}else//其余{if(mat[i][j] == '1'){if(mat[i][j+1] == '0')maxR = j+1;right[i][j] = min(maxR,right[i-1][j]);//还要更上面的比较,取小}}}for(j = 0; j < c; j++){if(i == 0)//第一行{if(mat[i][j] == '1')height[i][j] = 1;}else//剩余{if(mat[i][j] == '1')height[i][j] = 1+height[i-1][j];}}for(j = 0; j < c; j++)maxarea = max(maxarea, (right[i][j]-left[i][j])*height[i][j]);}return maxarea;//返回最大面积}
};
例子的求解过程如下:
数组
["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]
left
[0 0 2 0 0][0 0 2 2 2][0 0 2 2 2][0 0 0 3 0]
right
[1 5 3 5 5][1 5 3 5 5][1 5 3 5 5][1 5 5 4 5]
height
[1 0 1 0 0][2 0 2 1 1][3 1 3 2 2][4 0 0 3 0]
area
[1 0 1 0 0][2 0 2 3 3][3 5 3 6 6][4 0 0 3 0]
2.2 单调递增栈
- 思路跟84题一致,行数变多了而已
class Solution {
public:int maximalRectangle(vector<vector<char>>& mat) {if(mat.empty())return 0;int i, j, hi, width, maxarea = 0, m = mat.size(), n = mat[0].size();vector<int> h(n+1, 0);for(i = 0; i < m; ++i){stack<int> s;mat[i].push_back('0');//请看84题for(j = 0; j <= n; ++j){h[j] = mat[i][j]=='1' ? h[j]+1 : 0;//根据前一行,得到当前行的高while(!s.empty() && h[s.top()] > h[j]){hi = h[s.top()];s.pop();width = s.empty() ? j : j-s.top()-1;maxarea = max(maxarea, hi*width);}s.push(j);}}return maxarea;}
};