基本类型
通常,在使用任何编程语言进行编程时,您需要使用各种变量来存储各种信息。 变量只是保留值的存储位置。 这意味着,当你创建一个变量,你必须在内存中保留一些空间来存储它们。
您可能想存储各种数据类型的信息,如字符,宽字符,整数,浮点,双浮点,布尔等。基于变量的数据类型,操作系统分配内存并决定什么可以存储在保留内存中。
与其他编程语言(如C中的C和java)相反,变量不会声明为某种数据类型。 变量分配有R对象,R对象的数据类型变为变量的数据类型。尽管有很多类型的R对象,但经常使用的是:
- 矢量
- 列表
- 矩阵
- 数组
- 因子
- 数据帧
这些对象中最简单的是向量对象,并且这些原子向量有六种数据类型,也称为六类向量。 其他R对象建立在原子向量之上。
| 数据类型 | 例 | 校验 | 
|---|---|---|
| Logical(逻辑型) | TRUE, FALSE | 它产生以下结果 -  | 
| Numeric(数字) | 12.3,5,999 | 它产生以下结果 -  | 
| Integer(整型) | 2L,34L,0L | 它产生以下结果 -  | 
| Complex(复合型) | 3 + 2i | 它产生以下结果 -  | 
| Character(字符) | 'a' , '"good", "TRUE", '23.4' | 它产生以下结果 -  | 
| Raw(原型) | "Hello" 被存储为 48 65 6c 6c 6f | 它产生以下结果 -  | 
Vectors 向量
当你想用多个元素创建向量时,你应该使用c()函数,这意味着将元素组合成一个向量。
# 创建一个向量
apple <- c('red','green',"yellow")
print(apple)#获取向量的类型.
print(class(apple))执行以下结果:
[1] "red"    "green"  "yellow"
[1] "character"Lists 列表
列表是一个R对象,它可以在其中包含许多不同类型的元素,如向量,函数甚至其中的另一个列表。
# 创建一个列表.
list1 <- list(c(2,5,3),21.3,sin)# 打印出列表.
print(list1)执行结果:
[[1]]
[1] 2 5 3[[2]]
[1] 21.3[[3]]
function (x)  .Primitive("sin"Matrices 矩阵
矩阵是二维矩形数据集。 它可以使用矩阵函数的向量输入创建。
# 创建一个矩阵
M = matrix( c('a','a','b','c','b','a'), nrow = 2, ncol = 3, byrow = TRUE)
print(M)执行结果:
     [,1] [,2] [,3]
[1,] "a"  "a"  "b" 
[2,] "c"  "b"  "a"
Arrays 数组
虽然矩阵被限制为二维,但阵列可以具有任何数量的维度。 数组函数使用一个dim属性创建所需的维数。 在下面的例子中,我们创建了一个包含两个元素的数组,每个元素为3x3个矩阵。
# 创建一个数组
a <- array(c('green','yellow'),dim = c(3,3,2))
print(a)执行结果
, , 1[,1]     [,2]     [,3]    
[1,] "green"  "yellow" "green" 
[2,] "yellow" "green"  "yellow"
[3,] "green"  "yellow" "green" , , 2[,1]     [,2]     [,3]    
[1,] "yellow" "green"  "yellow"
[2,] "green"  "yellow" "green" 
[3,] "yellow" "green"  "yellow"  Factors 因子
       因子是使用向量创建的r对象。 它将向量与向量中元素的不同值一起存储为标签。 标签总是字符,不管它在输入向量中是数字还是字符或布尔等。 它们在统计建模中非常有用。
 使用factor()函数创建因子。nlevels函数给出级别计数。
# 创建一个向量
apple_colors <- c('green','green','yellow','red','red','red','green')#创建一个factor对象
factor_apple <- factor(apple_colors)# 打印 factor.
print(factor_apple)
print(nlevels(factor_apple))执行结果
[1] green  green  yellow red    red    red    green 
Levels: green red yellow
# applying the nlevels function we can know the number of distinct values
[1] 3Data Frames 数据帧
       数据帧是表格数据对象。 与数据帧中的矩阵不同,每列可以包含不同的数据模式。 第一列可以是数字,而第二列可以是字符,第三列可以是逻辑的。 它是等长度的向量的列表。
 使用data.frame()函数创建数据帧。
# 创建一个数据帧.
BMI <- 	data.frame(gender = c("Male", "Male","Female"), height = c(152, 171.5, 165), weight = c(81,93, 78),Age = c(42,38,26)
)
print(BMI)执行结果
 gender height weight Age
1   Male  152.0     81  42
2   Male  171.5     93  38
3 Female  165.0     78  26