实验课程名称:《数学软件与数学实验》
实验项目名称实验五:线性规划问题求解实验成绩实 验 者王宗德专业班级数学1504组 别同组者实验日期16年5月一、实验目的
1. 掌握用MATLAB优化工具箱求解线性规划问题的方法;
2. 练习建立实际问题的线性规划模型并求解;
二、实验课时:2课时
三、实验原理
线性规划(linear programming)是运筹学的一个重要的分支,它的应用十分广泛,不仅许多实际问题属于线性规划问题,而且运筹学的期货分支的一些问题也可以转化成线性规划问题,因此,线性规划瓿的求解在最优化中占据重要的地位。
命令:x=linprog(c,A,b)
2、模型:
命令:x=linprog(c,A,b,Aeq,beq)
注意:若没有不等式:存在,则令A=[ ],b=[ ]. 若没有等式约束, 则令Aeq=[ ], beq=[ ].
3、模型:
命令:[1] x=linprog(c,A,b,Aeq,beq, VLB,VUB)
[2] x=linprog(c,A,b,Aeq,beq, VLB,VUB, X0)
注意:[1] 若没有等式约束, 则令Aeq=[ ], beq=[ ]. [2]其中X0表示初始点
4、命令:[x,fval]=linprog(…)
返回最优解x及x处的目标函数值fval.
四、课堂演示
例1
解 编写M文件小xxgh1.m如下:
c=[-0.4 -0.28 -0.32 -0.72 -0.64 -0.6];
A=[0.01 0.01 0.01 0.03 0.03 0.03;0.02 0 0 0.05 0 0;0 0.02 0 0 0.05 0;0 0 0.03 0 0 0.08];
b=[850;700;100;900];
Aeq=[]; beq=[];
vlb=[0;0;0;0;0;0]; vub=[];
[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)
例2
解: 编写M文件xxgh2.m如下:
c = [ 6 3 4];
Aeq = [1 1 1];
beq = 120;
lb = [30;0;20];
ub = [inf;50;inf];
[x,val] = linprog(c,[],[],Aeq,beq,lb,ub)
Optimization terminated.
x =
30.0000
50.0000
40.0000
val =
490.0000
例3 (任务分配问题)某车间有甲、乙两台机床,可用于加工三种工件。假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400、600和500,且已知用三种不同车床加工单位数量不同工件所需的台时数和加工费用如下表。问怎样分配车床的加工任务,才能既满足加工工件的要求,又使加工费用最低?
解 设在甲车床上加工工件1、2、3的数量分别为x1、x2、x3,在乙车床上
加工工件1、2、3的数量分别为x4、x5、x6。可建立以下线性规划模型:
编写M文件xxgh3.m如下:
f = [13 9 10 11 12 8];
A = [0.4 1.1 1 0 0 0
0 0 0 0.5 1.2 1.3];
b = [800; 900];
Aeq=[1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1];
beq=[400 600 500];
vlb = zeros(6,1);
vub=[];
[x,fval] = linprog(f,A,b,Aeq,beq,vlb,vub)
例4.某厂每日8小时的产量不低于1800件。为了进行质量控制,计划聘请两种不同水平的检验员。一级检验员的标准为:速度25件/小时,正确率98%,计时工资4元/小时;二级检验员的标准为:速度15小时/件,正确率95%,计时工资3元/小时。检验员每错检一次,工厂要损失2元。为使总检验费用最省,该工厂应聘一级、二级检验员各几名?
解 设需要一级和二级检验员的人数分别为x1、x2人,
则应付检验员的工资为:
因检验员错检而造成的损失为:
故目标函数为:
约束条件为:
线性规划模型: