【问题描述】[困难]
【解答思路】
1. 主副对角线列 标记
复杂度
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Deque;
import java.util.List;public class Solution {private int n;// 记录某一列是否放置了皇后private boolean[] col;// 记录主对角线上的单元格是否放置了皇后private boolean[] main;// 记录了副对角线上的单元格是否放置了皇后private boolean[] sub;private List<List<String>> res;public List<List<String>> solveNQueens(int n) {res = new ArrayList<>();if (n == 0) {return res;}// 设置成员变量,减少参数传递,具体作为方法参数还是作为成员变量,请参考团队开发规范this.n = n;this.col = new boolean[n];this.main = new boolean[2 * n - 1];this.sub = new boolean[2 * n - 1];Deque<Integer> path = new ArrayDeque<>();dfs(0, path);return res;}private void dfs(int row, Deque<Integer> path) {if (row == n) {// 深度优先遍历到下标为 n,表示 [0.. n - 1] 已经填完,得到了一个结果List<String> board = convert2board(path);res.add(board);return;}// 针对下标为 row 的每一列,尝试是否可以放置for (int j = 0; j < n; j++) {if (!col[j] && !main[row + j] && !sub[row - j + n - 1]) {path.addLast(j);col[j] = true;main[row + j] = true;sub[row - j + n - 1] = true;dfs(row + 1, path);// 递归完成以后,回到之前的结点,需要将递归之前所做的操作恢复sub[row - j + n - 1] = false;main[row + j] = false;col[j] = false;path.removeLast();}}}private List<String> convert2board(Deque<Integer> path) {List<String> board = new ArrayList<>();for (Integer num : path) {StringBuilder row = new StringBuilder();row.append(".".repeat(Math.max(0, n)));row.replace(num, num + 1, "Q");board.add(row.toString());}return board;}
}
其实已经摆放皇后的列下标、占据了哪一条主对角线、哪一条副对角线也可以使用哈希表来记录。
实际上哈希表底层也是数组,使用哈希表可以不用处理已经占据位置的皇后的主对角线、副对角线的下标偏移问题。
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Deque;
import java.util.HashSet;
import java.util.List;
import java.util.Set;public class Solution {private Set<Integer> col;private Set<Integer> main;private Set<Integer> sub;private int n;private List<List<String>> res;public List<List<String>> solveNQueens(int n) {this.n = n;res = new ArrayList<>();if (n == 0) {return res;}col = new HashSet<>();main = new HashSet<>();sub = new HashSet<>();Deque<Integer> path = new ArrayDeque<>();dfs(0, path);return res;}private void dfs(int row, Deque<Integer> path) {if (row == n) {List<String> board = convert2board(path);res.add(board);return;}// 针对每一列,尝试是否可以放置for (int i = 0; i < n; i++) {if (!col.contains(i) && !main.contains(row + i) && !sub.contains(row - i)) {path.addLast(i);col.add(i);main.add(row + i);sub.add(row - i);dfs(row + 1, path);sub.remove(row - i);main.remove(row + i);col.remove(i);path.removeLast();}}}private List<String> convert2board(Deque<Integer> path) {List<String> board = new ArrayList<>();for (Integer num : path) {StringBuilder row = new StringBuilder();row.append(".".repeat(Math.max(0, n)));row.replace(num, num + 1, "Q");board.add(row.toString());}return board;}
}
2. board[n][n]标记 直接遍历
时间复杂度:O(N!) 空间复杂度:O(N2)
class Solution {List<List<String>> res=new ArrayList<>();public List<List<String>> solveNQueens(int n) {//棋盘,默认为0表示空,1表示皇后int[][] borad = new int[n][n];//row当前填写得的行号dfs(n,0,borad);return res;}public void dfs(int n,int row,int[][] board) { if (row == n) { // n个棋子都放置好了,打印结果 res.add(track(board,n));// n行棋子都放好了,已经没法再往下递归了,所以就return } return; }for (int column = 0; column < n; ++column) { // 每一行都有8中放法 if (isOk(row, column,n,board)) { // 有些放法不满足要求 board[row][column] =1; dfs( n,row+1,board); // 考察下一行board[row][column] =0;} }}private boolean isOk(int row ,int column ,int n,int[][] board){int leftup = column -1,rightup = column+1;for(int i=row-1;i>=0;i--){// 逐行往上考察每一行if(board[i][column]==1){// 第i行的column列有棋子吗?return false;}if(leftup>=0){// 考察左上对角线:第i行leftup列有棋子吗?if(1==board[i][leftup])return false;}if(rightup<n){// 考察右上对角线:第i行rightup列有棋子吗?if(1==board[i][rightup])return false;}leftup--;rightup++;}return true;}private List<String> track(int[][] board, int n) {// 打印出一个二维矩阵List<String> list=new ArrayList<>();for (int row = 0; row < n; ++row) { StringBuffer str = new StringBuffer();for (int column = 0; column < n; ++column) { if (board[row][column] == 1){str.append("Q");}else{str.append(".");} }list.add(str.toString());} return list;}
}
【总结】
1.回溯模板
List<> res = new LinkedList<>();
Deque<Integer> path = new ArrayDeque<>();void dfs(路径, 选择列表){if 满足结束条件{res.add(路径);return;}for 选择 in 选择列表{// 做选择;// 标记一下已经选了,有些题目不需要标记nums[i] = true;// 把选择的放进路径path.push(i)dfs(路径, 选择列表);// 恢复现场;path.pop();nums[i] = false;}
}
2.回溯思想
【数据结构与算法】【算法思想】回溯算法
转载链接:https://leetcode-cn.com/problems/n-queens/solution/gen-ju-di-46-ti-quan-pai-lie-de-hui-su-suan-fa-si-/
转载链接:https://leetcode-cn.com/problems/n-queens/solution/java-hui-su-xiang-xi-zhu-jie-bu-tong-fang-fa-pan-d/