[BZOJ4008]亚瑟王

Description

小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑。

他决定,在脱坑之前,最后再来打一盘亚瑟王。既然是最后一战,就一定要打得漂
亮。众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的。作为一个非
洲人,同时作为一个前 OIer,小 K 自然是希望最大化造成伤害的期望值。但他已
经多年没写过代码,连 Spaly都敲不对了,因此,希望你能帮帮小 K,让他感受一
下当欧洲人是怎样的体验。 
本题中我们将考虑游戏的一个简化版模型。 
玩家有一套卡牌,共 n张。游戏时,玩家将 n 张卡牌排列成某种顺序,排列后
将卡牌按从前往后依次编号为 1 ~  n。本题中,顺序已经确定,即为输入的顺序。
每张卡牌都有一个技能。第 i 张卡牌的技能发动概率为 pi,如果成功发动,则会对
敌方造成di点伤害。也只有通过发动技能,卡牌才能对敌方造成伤害。基于现实因
素以及小K非洲血统的考虑,pi不会为 0,也不会为 1,即 0 < pi < 1。 
一局游戏一共有 r 轮。在每一轮中,系统将从第一张卡牌开始,按照顺序依次
考虑每张卡牌。在一轮中,对于依次考虑的每一张卡牌: 
1如果这张卡牌在这一局游戏中已经发动过技能,则 
1.1 如果这张卡牌不是最后一张,则跳过之(考虑下一张卡牌); 
否则(是最后一张),结束这一轮游戏。 
2否则(这张卡牌在这一局游戏中没有发动过技能),设这张卡牌为第 i 张 
2.1将其以 pi的概率发动技能。 
2.2如果技能发动,则对敌方造成 di点伤害,并结束这一轮。 
2.3如果这张卡牌已经是最后一张(即 i 等于n),则结束这一轮;否则,
考虑下一张卡牌。 
请帮助小 K 求出这一套卡牌在一局游戏中能造成的伤害的期望值。 

Input

输入文件的第一行包含一个整数 T,代表测试数据组数。 

接下来一共 T 组数据。 
每组数据的第一行包含两个用空格分开的整数 n和r,分别代表卡牌的张数和
游戏的轮数。 
接下来 n行,每行包含一个实数和一个整数,由空格隔开,描述一张卡牌。第
i 行的两个数为 pi和 di,分别代表第 i 张卡牌技能发动的概率(实数)和技能发动
造成的伤害(整数)。保证 pi最多包含 4位小数,且为一个合法的概率。 

Output

 对于每组数据,输出一行,包含一个实数,为这套卡牌在这一局游戏中造成的

伤害的期望值。对于每一行输出,只有当你的输出和标准答案的相对误差不超过
10^-8时——即|a-o|/a<=10-8时(其中a是标准答案,o是输出),你的输出才会被判为正确。
建议输出10 位小数。 

Sample Input

1
3 2
0.5000 2
0.3000 3
0.9000 1

Sample Output

3.2660250000
对于所有测试数据, 1 <= T <= 444, 1 <= n <= 220, 0 <= r <= 132, 0 < pi < 1, 0 <= di <= 1000。  
除非备注中有特殊说明,数据中 pi与di均为随机生成。 
请注意可能存在的实数精度问题,并采取适当措施。 
题解
先膜一波XYZ大神
这道题首先我们要想好状态数组含义
由于这是个抽卡游戏,每抽到一张卡其他卡的概率都会改变
所以我们要消除这种不方便,故设f[i][j]表示前i张卡在游戏中剩下j轮被选择的概率
对于第i-1张卡,考虑它对前i张的贡献:要么在剩下j轮都没被打出,要么它一定在某一轮中放了技能
所以这张卡对前i张卡的影响是
j轮都没打出:f[i][j]+=f[i-1][j]*pow(1-p[i-1],j)
某一轮打出了:f[i][j-1]+=f[i-1][j]*(1-pow(1-p[i-1],j));
所以f[i][j]的递推公式是:f[i][j]=f[i-1][j]*pow(1-p[i-1],j)+f[i-1][j+1]*(1-pow(1-p[i-1],j+1));
然后把所有f[i][j]乘上在j轮中某一轮打出的概率(1-pow(1-p[i],j)),再乘伤害d[i]然后累加,得到的就是最后答案
代码见下
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int N=250;
const int R=150;
int t,n,r,d[N];
double p[N],k[N],f[N][R];
inline void intn()
{for(int i=0;i<N;i++)p[i]=k[i]=0;memset(d,0,sizeof(d));
}
int main()
{scanf("%d",&t);while(t--){intn();scanf("%d%d",&n,&r);for(int i=1;i<=n;i++)scanf("%lf%d",&p[i],&d[i]);for(int i=0;i<N;i++)for(int j=0;j<R;j++)f[i][j]=0;double ans=0;f[0][r]=1;for(int i=1;i<=n;i++)for(int j=1;j<=r;j++){f[i][j]=f[i-1][j]*pow(1-p[i-1],j)+f[i-1][j+1]*(1-pow(1-p[i-1],j+1));ans+=f[i][j]*(1-pow(1-p[i],j))*d[i];}printf("%.10lf\n",ans);}
}

 

转载于:https://www.cnblogs.com/LadyLex/p/7006906.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/400681.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PHP 四种基本排序算法的代码实现(2)

2019独角兽企业重金招聘Python工程师标准>>> 许多人都说算法是程序的核心&#xff0c;算法的好坏决定了程序的质量。作为一个初级phper&#xff0c;虽然很少接触到算法方面的东西。但是对于基本的排序算法还是应该掌握的&#xff0c;它是程序开发的必备工具。这里介…

【 Grey Hack 】综合工具 shellOs

目录交互界面基本功能本地攻击攻击本机远程攻击应用程序扫描功能更新IP并扫描深度扫描黑入功能类shell交互界面一些特殊命令bouncerunScanPswvimbuild脚本源码版本&#xff1a;Grey Hack v0.7.3619 - Alpha 交互界面 基本功能 使用cd命令和数字选项切换路径 本地攻击 攻击本…

明天开始新的作息时间了

论文基本完成了&#xff0c;要开始规划新的任务了。天气很好&#xff0c;利用好时间。 明天开始锻炼身体了&#xff0c;早上的单词放到晚上学习了&#xff0c;早上一边晨练一边听力。转载于:https://www.cnblogs.com/pulan/archive/2013/05/06/3063465.html

HttpContext.Current.Cache和HttpRuntime.Cache的区别,以及System.Runtime.Caching

先看MSDN上的解释&#xff1a; HttpContext.Current.Cache&#xff1a;为当前 HTTP 请求获取Cache对象。 HttpRuntime.Cache&#xff1a;获取当前应用程序的Cache。 我们再用.NET Reflector工具看看HttpContext.Cache和HttpRuntime.Cache的实现&#xff1a; Ht…

HIVE 一行转多行输出办法

2019独角兽企业重金招聘Python工程师标准>>> 1.问题描述 hive UDF 格式&#xff1a;oc号1_an号1_次数;oc号2_an号2_次数 转换结果&#xff1a; oc号1 an号1 次数 oc号2 an号2 次数 一行转多行&#xff0c;一行转多列 2.实现思路 第一步分割&#xff1a;split(oc号…

javascript/jquery获取图片的原始大小

实际生产过程中&#xff0c;我们往往有需要获得一个被压缩的图片的真实原始大小。此时我们可以用下面这个代码来实现&#xff1a; [js] // Get on screen image var screenImage $("#image"); // Create new offscreen image to test var theImage new Image(); th…

【机器视觉学习笔记】直方图的绘制及直方图均衡化(C++)

目录概念直方图定义直方图均衡化为什么要选用累积分布函数如何运用累积分布函数使得直方图均衡化C 源码直方图均衡化绘制直方图主函数效果完整源码平台&#xff1a;Windows 10 20H2 Visual Studio 2015 OpenCV 4.5.3 本文综合自直方图计算和程序员-图哥——图像处理之直方图均…

盒模型

CSSDIV 将数据封装到div中&#xff0c;页面中都是有很多div组成的&#xff0c;通过css布局(通过css属性布局)完成这些div位置的存放&#xff0c;一个div就是一个盒子。 边框   border:{ --left --right --top --bottom }; #div_1{ border-top:1px solid #ccc; border-bottom:…

C/C++ 如何劫持别人家的命令||函数||程序(只能对于window而言)

要实现下面程序&#xff0c;首先我们需要三个文件 detours.h &#xff0c;detours.lib &#xff0c;detver.h&#xff08;可以去网上下载&#xff09; 1. 首先让我们看看&#xff0c;一个最简单的C程序&#xff0c;如何劫持system函数. 1 #include<stdio.h>2 #include<…

【机器视觉学习笔记】伽马变换(C++)

目录概念C源码变换函数主函数效果完整源码平台&#xff1a;Windows 10 20H2 Visual Studio 2015 OpenCV 4.5.3 本文内容节选自《数字图像处理》第三版 C源码修改自C数字图像处理&#xff08;1&#xff09;-伽马变换 —— 图像大师 概念 C源码 变换函数 //函数名&#xff1…

soapui自带的webservice实例 MockService

soapui自带的webservice实例 & MockService&#xff1a; http://www.docin.com/p-646423228.html 转载于:https://www.cnblogs.com/preftest/archive/2013/05/09/3070243.html

数据库和数据挖掘领域的会议和期刊

数据库和数据挖掘领域的会议和期刊数据库领域主要专注于数据库系统和数据管理算法&#xff0c;而数据挖掘主要是专注于数据价值分析算法。一、数据库领域的主要会议数据库领域的顶级会议SIGMOD、ICDE、VLDB&#xff0c;下面将对这三大会议进行一下简单介绍。 SIGMOD-----------…

lxml库的基本使用

Python之lxml模块的使用&#xff1a;1. 认识lxml2. lxml中基本使用2.1 安装并导入lxml模块2.2 节点操作&#xff1a;2.3 属性操作&#xff1a;2.4 文本操作2.5 xml文件解析与序列化2.6 lxml命名空间的处理3. 使用lxml解析xml案例4. 使用lxml生成一个xml文件案例&#xff1a;5. …

Linux文件查找之find秘笈

前言Linux的基本特点之一是一切皆文件&#xff0c;在系统管理过程中难免会需要查找特定类型的文件&#xff0c;那么问题来了&#xff1a;如何进行有效且准确的查找呢&#xff1f;本文将对Linux系统中的文件查找工具及用法进行详细讲解。常用工具对比常用的文件查找工具主要有lo…

【机器视觉学习笔记】大津法/Otsu最大类间方差法 最佳阈值处理(C++)

目录概念C源码OtsuThreshold主函数效果完整源码平台&#xff1a;Windows 10 20H2 Visual Studio 2015 OpenCV 4.5.3 本文所用源码修改自C opencv 图片二值化最佳阈值确定&#xff08;大津法,OTSU算法)——Sharon Liu 概念 Otsu算法&#xff0c;也叫最大类间方差法&#xff0…

HTML 页面源代码布局介绍

此介绍以google首页源代码截图为例&#xff1a; 从上到下依次介绍&#xff1a; 1.<!DOCTYPE html> 此标签可告知浏览器文档使用哪种 HTML 或 XHTML 规范。 XHTML规范&#xff1a;必须小写&#xff0c;有开始结束标签&#xff0c;属性也用双引号。 HTML规范&#xff1a;不…

Python对Protobuf进行序列化与反序列化

Python Protobuf1.了解Protobuf&#xff1a;1.1 Protobuf语法介绍&#xff1a;2. Python使用Protobuf&#xff1a;(windows平台上)1.了解Protobuf&#xff1a; 我们在使用protobuf之前首先要了解protobuf&#xff0c;那么什么是protobuf呢&#xff1f; 官方的解释是&#xff…

sql server management studio 查询的临时文件路径

C:\Users\你的登录名称\Documents\SQL Server Management Studio\Backup FilesC:\Users\你的登录名称\AppData\Local\Temp\sql server management studio 非正常关闭时自动保存的路径在sql server management studio 里创建的“新建查询”且没有手动保存的路径转载于:https://w…

Linux下如何自己编译源代码(制作成可以安装的.deb文件)

以tree实用程序&#xff08;以树型结构获取目录树&#xff09;为例&#xff0c;介绍Ubuntu中如何管理源码包&#xff0c;包括查询&#xff0c;获取&#xff0c;编译源码包&#xff0c;直至安装。1&#xff09; 在获取源码包之前&#xff0c;确保在软件源配置文件/etc/apt/sourc…

K210 / Openmv实现 大津法/Otsu最大类间方差法 自适应二值化

目录源码效果平台&#xff1a;K210 固件版本&#xff1a;maixpy_v0.6.2_54_g897214100_openmv_kmodel_v4_with_ide_support.bin OpenMv库自带Otsu算法: 源码 # Otsu.py - By: Royic - 周三 9月 22 2021import sensor, imagesensor.reset() sensor.set_pixformat(sensor.GRAY…