X86汇编快速入门

本文翻译自:http://www.cs.virginia.edu/~evans/cs216/guides/x86.html

本文描述基本的32位X86汇编语言的一个子集,其中涉及汇编语言的最核心部分,包括寄存器结构,数据表示,基本的操作指令(包括数据传送指令、逻辑计算指令、算数运算指令),以及函数的调用规则。个人认为:在理解了本文后,基本可以无障碍地阅读绝大部分标准X86汇编程序。当然,更复杂的指令请参阅Intel相关文档。

1 寄存器.

主要寄存器如下图所示:


X86处理器中有8个32位的通用寄存器。由于历史的原因,EAX通常用于计算,ECX通常用于循环变量计数。ESP和EBP有专门用途,ESP指示栈指针(用于指示栈顶位置),而EBP则是基址指针(用于指示子程序或函数调用的基址指针)。如图中所示,EAX、EBX、ECX和EDX的前两个高位字节和后两个低位字节可以独立使用,其中两位低字节又被独立分为H和L部分,这样做的原因主要是考虑兼容16位的程序,具体兼容匹配细节请查阅相关文献。

应用寄存器时,其名称大小写是不敏感的,如EAX和eax没有区别。

2 内存和寻址模式

2.1声明静态数据区

可以在X86汇编语言中用汇编指令.DATA声明静态数据区(类似于全局变量),数据以单字节、双字节、或双字(4字节)的方式存放,分别用DB,DW, DD指令表示声明内存的长度。在汇编语言中,相邻定义的标签在内存中是连续存放的。

.DATA      
var DB 64   ;声明一个字节,并将数值64放入此字节中
var2 DB ? ; 声明一个为初始化的字节.
  DB 10 ; 声明一个没有label的字节,其值为10.
X DW ? 声明一个双字节,未初始化.
Y DD 30000     ; 声明一个4字节,其值为30000.

还可以声明连续的数据和数组,声明数组时使用DUP关键字

Z DD 1, 2, 3 ; Declare three 4-byte values, initialized to 1, 2, and 3. The value of location Z + 8 will be 3.
bytes   DB 10 DUP(?) ; Declare 10 uninitialized bytes starting at location bytes.
arr DD 100 DUP(0)     ; Declare 100 4-byte words starting at location arr, all initialized to 0
str DB 'hello',0 ; Declare 6 bytes starting at the address str, initialized to the ASCII character values for hello and the null (0) byte.

2.2 寻址模式

现代X86处理器具有232字节的寻址空间。在上面的例子中,我们用标签(label)表示内存区域,这些标签在实际汇编时,均被32位的实际地址代替。除了支持这种直接的内存区域描述,X86还提供了一种灵活的内存寻址方式,即利用最多两个32位的寄存器和一个32位的有符号常数相加计算一个内存地址,其中一个寄存器可以左移1、2或3位以表述更大的空间。下面例子是汇编程序中常见的方式

mov eax, [ebx] ; 将ebx值指示的内存地址中的4个字节传送到eax中
mov [var], ebx ebx的内容传送到var的值指示的内存地址中.
mov eax, [esi-4] ; 将esi-4值指示的内存地址中的4个字节传送到eax中
mov [esi+eax], cl ; 将cl的值传送到esi+eax的值指示的内存地址中
mov edx, [esi+4*ebx]     ; 将esi+4*ebx值指示的内存中的4个字节传送到edx

下面是违反规则的例子:

mov eax, [ebx-ecx] ; 只能用加法
mov [eax+esi+edi], ebx     ; 最多只能有两个寄存器参与运算

2.3 长度规定

在声明内存大小时,在汇编语言中,一般用DB,DW,DD均可声明的内存空间大小,这种现实声明能够很好地指导汇编器分配内存空间,但是,对于

mov [ebx], 2

如果没有特殊的标识,则不确定常数2是单字节、双字节,还是双字。对于这种情况,X86提供了三个指示规则标记,分别为BYTE PTRWORD PTR, and DWORD PTR,如上面例子写成:mov BYTE PTR [ebx], 2, mov WORD PTR [ebx], 2, mov DWORD PTR [ebx], 2,则意思非常清晰。

3 汇编指令

汇编指令通常可以分为数据传送指令、逻辑计算指令和控制流指令。本节将讲述其中最重要的指令,以下标记分别表示寄存器、内存和常数。

<reg32>     32位寄存器 (EAXEBXECXEDXESIEDIESP, or EBP)
<reg16> 16位寄存器 (AXBXCX, or DX)
<reg8> 8位寄存器(AHBHCHDHALBLCL, or DL)
<reg> 任何寄存器
   
<mem> 内存地址 (e.g., [eax][var + 4], or dword ptr [eax+ebx])
<con32> 32为常数
<con16> 16位常数
<con8> 8位常数
<con> 任何8位、16位或32位常数

3.1 数据传送指令

mov — Move (Opcodes: 88, 89, 8A, 8B, 8C, 8E, ...)

mov指令将第二个操作数(可以是寄存器的内容、内存中的内容或值)复制到第一个操作数(寄存器或内存)。mov不能用于直接从内存复制到内存,其语法如下所示:

mov <reg>,<reg>
mov <reg>,<mem>
mov <mem>,<reg>
mov <reg>,<const>
mov <mem>,<const>

Examples
mov eax, ebx — 将ebx的值拷贝到eax
mov byte ptr [var], 5 — 将5保存找var指示内存中的一个字节中

push— Push stack (Opcodes: FF, 89, 8A, 8B, 8C, 8E, ...)

push指令将操作数压入内存的栈中,栈是程序设计中一种非常重要的数据结构,其主要用于函数调用过程中,其中ESP只是栈顶。在压栈前,首先将ESP值减4(X86栈增长方向与内存地址编号增长方向相反),然后将操作数内容压入ESP指示的位置。其语法如下所示:

push <reg32>
push <mem>
push <con32>

Examples
push eax — 将eax内容压栈
push [var] — 将var指示的4直接内容压栈

pop— Pop stack

pop指令与push指令相反,它执行的是出栈的工作。它首先将ESP指示的地址中的内容出栈,然后将ESP值加4. 其语法如下所示:
pop <reg32>
pop <mem>

Examples
pop edi — pop the top element of the stack into EDI.
pop [ebx] — pop the top element of the stack into memory at the four bytes starting at location EBX.

lea— Load effective address

 lea实际上是一个载入有效地址指令,将第二个操作数表示的地址载入到第一个操作数(寄存器)中。其语法如下所示:

Syntax
lea <reg32>,<mem>

Examples
lea eax, [var] — var指示的地址载入eax中.
lea edi, [ebx+4*esi] — ebx+4*esi表示的地址载入到edi中,这实际是上面所说的寻址模式的一种表示方式.

3.2 算术和逻辑指令

add— Integer Addition

add指令将两个操作数相加,且将相加后的结果保存到第一个操作数中。其语法如下所示:

add <reg>,<reg>
add <reg>,<mem>
add <mem>,<reg>
add <reg>,<con>
add <mem>,<con>
Examples
add eax, 10 — EAX ← EAX + 10
add BYTE PTR [var], 10 — 10与var指示的内存中的一个byte的值相加,并将结果保存在var指示的内存中

sub— Integer Subtraction

sub指令指示第一个操作数减去第二个操作数,并将相减后的值保存在第一个操作数,其语法如下所示:

sub <reg>,<reg>
sub <reg>,<mem>
sub <mem>,<reg>
sub <reg>,<con>
sub <mem>,<con>
Examples
sub al, ah — AL ← AL - AH
sub eax, 216 — eax中的值减26,并将计算值保存在eax中

inc, dec— Increment, Decrement

inc,dec分别表示将操作数自加1,自减1,其语法如下所示:

inc <reg>
inc <mem>
dec <reg>
dec <mem>

Examples
dec eax — eax中的值自减1.
inc DWORD PTR [var] — var指示内存中的一个4-byte值自加1

imul— Integer Multiplication

整数相乘指令,它有两种指令格式,一种为两个操作数,将两个操作数的值相乘,并将结果保存在第一个操作数中,第一个操作数必须为寄存器;第二种格式为三个操作数,其语义为:将第二个和第三个操作数相乘,并将结果保存在第一个操作数中,第一个操作数必须为寄存器。其语法如下所示:

imul <reg32>,<reg32>
imul <reg32>,<mem>
imul <reg32>,<reg32>,<con>
imul <reg32>,<mem>,<con>

Examples

imul eax, [var] — eax→ eax * [var]
imul esi, edi, 25 — ESI → EDI * 25

idiv— Integer Division

idiv指令完成整数除法操作,idiv只有一个操作数,此操作数为除数,而被除数则为EDX:EAX中的内容(一个64位的整数),操作的结果有两部分:商和余数,其中商放在eax寄存器中,而余数则放在edx寄存器中。其语法如下所示:

Syntax
idiv <reg32>
idiv <mem>

Examples

idiv ebx
idiv DWORD PTR [var]
 
and, or, xor— Bitwise logical and, or and exclusive or
逻辑与、逻辑或、逻辑异或操作指令,用于操作数的位操作,操作结果放在第一个操作数中。其语法如下所示:
and <reg>,<reg>
and <reg>,<mem>
and <mem>,<reg>
and <reg>,<con>
and <mem>,<con>

or <reg>,<reg>
or <reg>,<mem>
or <mem>,<reg>
or <reg>,<con>
or <mem>,<con>

xor <reg>,<reg>
xor <reg>,<mem>
xor <mem>,<reg>
xor <reg>,<con>
xor <mem>,<con>

Examples
and eax, 0fH — 将eax中的钱28位全部置为0,最后4位保持不变.
xor edx, edx — 设置edx中的内容为0.

not— Bitwise Logical Not

位翻转指令,将操作数中的每一位翻转,即0->1, 1->0。其语法如下所示:

not <reg>
not <mem>

Example
not BYTE PTR [var] — 将var指示的一个字节中的所有位翻转.

neg— Negate

取负指令。语法为:

neg <reg>
neg <mem>

Example
neg eax — EAX → - EAX

shl, shr— Shift Left, Shift Right

位移指令,有两个操作数,第一个操作数表示被操作数,第二个操作数指示位移的数量。其语法如下所示:

shl <reg>,<con8>
shl <mem>,<con8>
shl <reg>,<cl>
shl <mem>,<cl>

shr <reg>,<con8>
shr <mem>,<con8>
shr <reg>,<cl>
shr <mem>,<cl>

Examples

shl eax, 1 — Multiply the value of EAX by 2 (if the most significant bit is 0),左移1位,相当于乘以2
shr ebx, cl — Store in EBX the floor of result of dividing the value of EBX by 2n where n is the value in CL.
3.3 控制转移指令
X86处理器维持着一个指示当前执行指令的指令指针(IP),当一条指令执行后,此指针自动指向下一条指令。IP寄存器不能直接操作,但是可以用控制流指令更新。
一般用标签(label)指示程序中的指令地址,在X86汇编代码中,可以在任何指令前加入标签。如:
       mov esi, [ebp+8]
begin: xor ecx, ecxmov eax, [esi]

如第二条指令用begin指示,这种标签的方法在某种程度上简化了汇编程序设计,控制流指令通过标签实现程序指令跳转。

jmp — Jump

控制转移到label所指示的地址,(从label中取出执行执行),如下所示:

jmp <label>

Example
jmp begin — Jump to the instruction labeled begin.

jcondition— Conditional Jump

条件转移指令,条件转移指令依据机器状态字中的一些列条件状态转移。机器状态字中包括指示最后一个算数运算结果是否为0,运算结果是否为负数等。机器状态字具体解释请见微机原理、计算机组成等课程。语法如下所示:

je <label> (jump when equal)
jne <label> (jump when not equal)
jz <label> (jump when last result was zero)
jg <label> (jump when greater than)
jge <label> (jump when greater than or equal to)
jl <label> (jump when less than)
jle <label>(jump when less than or equal to)

Example
cmp eax, ebx
jle done  , 如果eax中的值小于ebx中的值,跳转到done指示的区域执行,否则,执行下一条指令。

cmp— Compare
cmp指令比较两个操作数的值,并根据比较结果设置机器状态字中的条件码。此指令与sub指令类似,但是cmp不用将计算结果保存在操作数中。其语法如下所示:
cmp <reg>,<reg>
cmp <reg>,<mem>
cmp <mem>,<reg>
cmp <reg>,<con>

Example
cmp DWORD PTR [var], 10
jeq loop, 

比较var指示的4字节内容是否为10,如果不是,则继续执行下一条指令,否则,跳转到loop指示的指令开始执行
callret— Subroutine call and return
这两条指令实现子程序(过程、函数等意思)的调用及返回。call指令首先将当前执行指令地址入栈,然后无条件转移到由标签指示的指令。与其它简单的跳转指令不同,call指令保存调用之前的地址信息(当call指令结束后,返回到调用之前的地址)。
ret指令实现子程序的返回机制,ret指令弹出栈中保存的指令地址,然后无条件转移到保存的指令地址执行。
call,ret是函数调用中最关键的两条指令。具体细节见下面一部分的讲解。语法为:
call <label>
ret
4 调用规则
为了加强程序员之间的协作及简化程序开发进程,设定一个函数调用规则非常必要,函数调用规则规定函数调用及返回的规则,只要遵照这种规则写的程序均可以正确执行,从而程序员不必关心诸如参数如何传递等问题;另一方面,在汇编语言中可以调用符合这种规则的高级语言所写的函数,从而将汇编语言程序与高级语言程序有机结合在一起。
调用规则分为两个方面,及调用者规则和被调用者规则,如一个函数A调用一个函数B,则A被称为调用者(Caller),B被称为被调用者(Callee)。
下图显示一个调用过程中的内存中的栈布局:

在X86中,栈增长方向与内存编号增长方向相反。

Caller Rules

调用者规则包括一系列操作,描述如下:

1)在调用子程序之前,调用者应该保存一系列被设计为调用者保存的寄存器的值。调用者保存寄存器有eax,ecx,edx。由于被调用的子程序会修改这些寄存器,所以为了在调用子程序完成之后能正确执行,调用者必须在调用子程序之前将这些寄存器的值入栈。

2)在调用子程序之前,将参数入栈。参数入栈的顺序应该是从最后一个参数开始,如上图中parameter3先入栈。

3)利用call指令调用子程序。这条指令将返回地址放置在参数的上面,并进入子程序的指令执行。(子程序的执行将按照被调用者的规则执行)

当子程序返回时,调用者期望找到子程序保存在eax中的返回地址。为了恢复调用子程序执行之前的状态,调用者应该执行以下操作:

1)清除栈中的参数;

2)将栈中保存的eax值、ecx值以及edx值出栈,恢复eax、ecx、edx的值(当然,如果其它寄存器在调用之前需要保存,也需要完成类似入栈和出栈操作)

Example 

如下代码展示了一个调用子程序的调用者应该执行的操作。此汇编程序调用一个具有三个参数的函数_myFunc,其中第一个参数为eax,第二个参数为常数216,第三个参数为var指示的内存中的值。

push [var] ; Push last parameter first
push 216   ; Push the second parameter
push eax   ; Push first parameter lastcall _myFunc ; Call the function (assume C naming)add esp, 12

在调用返回时,调用者必须清除栈中的相应内容,在上例中,参数占有12个字节,为了消除这些参数,只需将ESP加12即可。

 _myFunc的值保存在eax中,ecx和edx中的值也许已经被改变,调用者还必须在调用之前保存在栈中,并在调用结束之后,出栈恢复ecx和edx的值。

被调用者规则

被调用者应该遵循如下规则:

1)将ebp入栈,并将esp中的值拷贝到ebp中,其汇编代码如下:

    push ebpmov  ebp, esp

上述代码的目的是保存调用子程序之前的基址指针,基址指针用于寻找栈上的参数和局部变量。当一个子程序开始执行时,基址指针保存栈指针指示子程序的执行。为了在子程序完成之后调用者能正确定位调用者的参数和局部变量,ebp的值需要返回。

2)在栈上为局部变量分配空间。

3)保存callee-saved寄存器的值,callee-saved寄存器包括ebx,edi和esi,将ebx,edi和esi压栈。

4)在上述三个步骤完成之后,子程序开始执行,当子程序返回时,必须完成如下工作:

  4.1)将返回的执行结果保存在eax中

  4.2)弹出栈中保存的callee-saved寄存器值,恢复callee-saved寄存器的值(ESI和EDI)

  4.3)收回局部变量的内存空间。实际处理时,通过改变EBP的值即可:mov esp, ebp。 

  4.4)通过弹出栈中保存的ebp值恢复调用者的基址寄存器值。

  4.5)执行ret指令返回到调用者程序。

After these three actions are performed, the body of the subroutine may proceed. When the subroutine is returns, it must follow these steps:

  1. Leave the return value in EAX.

Example

.486
.MODEL FLAT
.CODE
PUBLIC _myFunc
_myFunc PROC; Subroutine Prologuepush ebp     ; Save the old base pointer value.mov ebp, esp ; Set the new base pointer value.sub esp, 4   ; Make room for one 4-byte local variable.push edi     ; Save the values of registers that the functionpush esi     ; will modify. This function uses EDI and ESI.; (no need to save EBX, EBP, or ESP); Subroutine Bodymov eax, [ebp+8]   ; Move value of parameter 1 into EAXmov esi, [ebp+12]  ; Move value of parameter 2 into ESImov edi, [ebp+16]  ; Move value of parameter 3 into EDImov [ebp-4], edi   ; Move EDI into the local variableadd [ebp-4], esi   ; Add ESI into the local variableadd eax, [ebp-4]   ; Add the contents of the local variable; into EAX (final result); Subroutine Epilogue pop esi      ; Recover register valuespop  edimov esp, ebp ; Deallocate local variablespop ebp ; Restore the caller's base pointer valueret
_myFunc ENDP
END

子程序首先通过入栈的手段保存ebp,分配局部变量,保存寄存器的值。

在子程序体中,参数和局部变量均是通过ebp进行计算。由于参数传递在子程序被调用之前,所以参数总是在ebp指示的地址的下方(在栈中),因此,上例中的第一个参数的地址是ebp+8,第二个参数的地址是ebp+12,第三个参数的地址是ebp+16;而局部变量在ebp指示的地址的上方,所有第一个局部变量的地址是ebp-4,而第二个这是ebp-8.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/351061.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Django(三)框架之第二篇

https://www.cnblogs.com/haiyan123/p/7717788.html 一、知识点回顾 1、MTV模型 model&#xff1a;模型&#xff0c;和数据库相关的 template&#xff1a;模板&#xff0c;存放html文件&#xff0c;模板语法&#xff08;目的是将变量如何巧妙的嵌入到HTML页面中&#xff09;。 …

使用GDB调试C库

用gdb调试程序时&#xff0c;一般的函数都可以step进去&#xff0c;可是C库函数却直接跳过了。 网上找了些资料&#xff0c;记录一下&#xff01; 1.安装C库的debug版本 [plain] view plaincopy print?sudo apt-get install libc6-dbg 安装完后&#xff0c;在/usr/lib目录下…

matlab imfilter对图像进行滤波

功能&#xff1a;对任意类型数组或多维图像进行滤波。 用法&#xff1a;B imfilter(A,H)    B imfilter(A,H,option1,option2,...)    或写作g imfilter(f, w, filtering_mode, boundary_options, size_options) 其中&#xff0c;f为输入图像&#xff0c;w为滤波掩模&…

MapStruct:将数据从一个bean传输到另一个bean

将数据从一种形式转换为另一种形式在IT行业中是一种被高度利用的概念。 MapStruct通过在编译时生成映射器实现&#xff0c;允许基于注释的Bean转换。 这样可以确保在运行时没有性能开销。 什么是MapStruct&#xff1f; MapStruct是一个代码生成器&#xff0c;它基于约定优于配…

eclipse发布rest_在Eclipse中高效运行HTTP / REST集成测试

eclipse发布rest最近&#xff0c;我有机会使用由我亲爱的Holger Staudacher编写的OSGi-JAX-RS-Connector库。 通过连接器&#xff0c;您可以通过将Path注释的类型注册为OSGi服务来轻松发布资源-实际上&#xff0c;它工作得很好。 对我来说&#xff0c;使用普通的JUnit测试编写…

gdb调试命令

本文主要参考自&#xff1a;http://www.cnblogs.com/zzx1045917067/archive/2012/12/26/2834310.html&#xff0c;进行了一点补充和编排&#xff1b;Core dump部分参考了&#xff1a;http://blog.ddup.us/?p176。 gdb是一个在UNIX环境下的命令行调试工具。 如果需要使用gdb调试…

分享一个windows下检测硬件信息的bat脚本

文件名必须以.bat结尾&#xff0c;如果出现闪退&#xff0c;请右击鼠标&#xff0c;以管理身份运行即可 echo offcolor 0atitle 硬件检测 mode con cols90sc config winmgmt start auto >nul 2<&1net start winmgmt 2>1nulsetlocal ENABLEDELAYEDEXPANSIONecho 主…

matlab imfinfo返回图像信息

语法&#xff1a; info imfinfo(filename,fmt) %输入图像名&#xff0c;图像的格式 info imfinfo(filename)%输入图像名 示例程序&#xff1a; info imfinfo(C:\test1.jpg) %返回图像信息&#xff0c;注意&#xff1a;输入必须字符串 info.Width …

Apache Camel 2.18发布–包含内容

本周发布了Apache Camel 2.18.0 。 此版本是重要版本&#xff0c;我将在此博客文章中重点介绍。 Java 8 Camel 2.18是要求Java 1.8的第一个发行版&#xff08;例如&#xff0c;容易记住的Camel 2.18 Java1.8。Camel2.17 Java 1.7&#xff09;。 我们采取了谨慎的方法&…

C# 中 FindControl 方法及使用

FindControl 的使用方法 FindControl (String id)&#xff1a; 在页命名容器中搜索带指定标识符的服务器控件。&#xff08;有点类似javascript中的getElementById(string)&#xff09; 今天做了一个打印的报表 &#xff0c;要求在指定位置显示列表中某字段的内容&#xff0c;…

matlab imresize对图像进行缩小放大

matlab中函数imresize简介&#xff1a; 函数功能&#xff1a;该函数用于对图像做缩放处理。 调用格式&#xff1a; B imresize(A, m) 返回的图像B的长宽是图像A的长宽的m倍&#xff0c;即缩放图像。 m大于1&#xff0c; 则放大图像&#xff1b; m小于1&#xff0c; 缩小图像。…

matlab imrotate图像旋转

B imrotate(A,angle) 将图像A&#xff08;图像的数据矩阵&#xff0c;既可以是灰度图像&#xff0c;也可以是RGB图像&#xff09;绕图像的中心点旋转angle度&#xff0c; 正数表示逆时针旋转&#xff0c; 负数表示顺时针旋转。返回旋转后的图像矩阵。 B imrotate(A,angle,met…

理解爬虫原理

1.简单说明爬虫原理 爬虫就是通过互联网各个沾点组成的节点网&#xff0c;通过代码返回给浏览器&#xff0c;然后解析这部分的代内容&#xff0c;将网页内的内容简洁地呈现在我们的面前。爬虫的流程可以分为&#xff1a;发送请求、获取响应内容、解析内容、保存数据。 2.使用 r…

带有Java DSL的Spring Integration MongoDB适配器

1引言 这篇文章解释了如何使用Spring Integration从MongoDB数据库中保存和检索实体。 为了实现这一点&#xff0c;我们将使用Java DSL配置扩展来配置入站和出站MongoDB通道适配器。 例如&#xff0c;我们将构建一个应用程序&#xff0c;使您可以将订单写入MongoDB存储&#xff…

matlab linspace

用法&#xff1a;linspace(x1,x2,N)   功能&#xff1a;linspace是Matlab中的一个指令&#xff0c;用于产生x1,x2之间的N点行矢量。其中x1、x2、N分别为起始值、中止值、元素个数。若缺省N&#xff0c;默认点数为100。在matlab的命令窗口下输入help linspace或者doc linspac…

Linux strace命令

简介 strace常用来跟踪进程执行时的系统调用和所接收的信号。 在Linux世界&#xff0c;进程不能直接访问硬件设备&#xff0c;当进程需要访问硬件设备(比如读取磁盘文件&#xff0c;接收网络数据等等)时&#xff0c;必须由用户态模式切换至内核态模式&#xff0c;通 过系统调用…

网站发布

1.文件发布 右击工程&#xff0c;选择发布 发布方法选择文件发布&#xff0c;打开你的程式路径&#xff0c;然后一步步操作即可。 转载于:https://www.cnblogs.com/alannxu/p/10613453.html

什么是javax.ws.rs.core.context? [第4部分]

如何使用Context批注 在什么是javax.ws.rs.core.context的第3部分中&#xff1f; 您学习了如何在请求和配置&#xff0c;提供程序和应用程序实例中使用Context批注。 在本文中&#xff0c;您将学习如何使用Context批注注入HttpServletResponse和HttpServletRequest类。 获取对…

matlab im2double

im2double函数&#xff0c;如果输入是 uint8 unit16 或者是二值的logical类型&#xff0c;则函数im2double 将其值归一化到0&#xff5e;1之间。

重学前端(一)

前端知识框架&#xff1a;自己觉得很不错的一个前端知识框架 转载于:https://www.cnblogs.com/angel1254/p/10616065.html