B
题解
$f[i][(gcd(prime[j]*prime[k]\%P,P))]=\sum\limits_{k=1}^{k<=num} f[i-1][k]*phi(\frac{P}{prime[j]})$
关于$phi(\frac{P}{prime[j]})$理解
$phi(\frac{P}{prime[j]})$是求$prime[j]$代表的数的个数
$P=k_0*prime[j]$
$x_1=k_1*prime[j]$
$x_2=k_2*prime[j]$
.......
要求代表$prime[j]$数个数就是求$k_1$,$k_2$个数$(k_0,k_1,k_2等互质)$(不互质$gcd就是别的数了$)
移项显然与$k_0$互质数个数就是$phi(\frac{P}{prime[j]})$
代码


#include<bits/stdc++.h> using namespace std; #define ll long long #define A 55 const ll mod=1e9+7; ll f[A][23333],phi[A*A],prm[A*A],to[A*A][A*A]; ll n,m,P; ll meng(ll x,ll k){ll ans=1;for(;k;k>>=1,x=x*x%mod)if(k&1)ans=ans*x%mod;return ans; } ll gcd(ll x,ll y){if(y==0) return x;return gcd(y,x%y); } ll p(ll x){ll ans=x;for(ll i=2;i*i<=x;i++){if(x%i==0){ans=ans/i*(i-1);while(x%i==0) x/=i;}}if(x>1) ans=ans/x*(x-1);return ans; } void fen(ll x){for(ll i=1;i*i<=x;i++){if(x%i==0){prm[++prm[0]]=i;if(i*i!=x) prm[++prm[0]]=x/i;}}sort(prm+1,prm+prm[0]+1); } void pre_work(){fen(P);for(ll i=1;i<=prm[0];i++)phi[i]=p(P/prm[i]);for(ll j=1;j<=prm[0];j++){for(ll pre=1;pre<=prm[0];pre++){ll g=gcd(prm[j]*prm[pre]%P,P);to[j][pre]=lower_bound(prm+1,prm+prm[0]+1,g)-prm;}} } void work(){for(ll i=2;i<=n;i++)for(ll j=1;j<=prm[0];j++)for(ll pre=1;pre<=prm[0];pre++)(f[i][to[j][pre]]+=f[i-1][pre]*phi[j]%mod)%=mod; } void sub_task(){pre_work();for(ll j=1;j<=prm[0];j++)f[1][j]=phi[j];work();for(ll i=1,a;i<=m;i++){scanf("%lld",&a); a=lower_bound(prm+1,prm+prm[0]+1,gcd(a,P))-prm;printf("%lld ",f[n][a]*meng(phi[a],mod-2)%mod)%mod;}printf("\n"); } int main(){scanf("%lld%lld%lld",&n,&m,&P);sub_task();return 0; }
C
题解
三分,对于怎么看出来三分,这可能是个套路,你觉得这个题你用贪心做不了(但非常像贪心),二分答案会被hack,然后你$dp$也难以做,你三分就可以了
三分$check$贪心做,很水,瞎jb差分一下,我会说贪心我考试时就写对了吗?
注意细节,细节很多,不要死于细节
代码


/* n*log^2 */ #include<bits/stdc++.h> using namespace std; #define ll long long #define A 222222 struct node{ll l,r;friend bool operator < (const node & a,const node &b){return a.l==b.l?a.r>b.r:a.l<b.l;} }wat[A]; ll n,m,t,ans=0x7fffffffffffff,maxx=0,cnt=0; ll p[A],lef[A],now[A],c[A]; ll check(ll x){ll sum=0;for(ll i=1;i<=n;i++){now[i]=max(p[i]-x,0ll);c[i]=0;}for(ll i=1;i<=n;i++){ll nowid=lef[i];c[i]+=c[i-1];if(lef[i]==0) continue ;ll cha=c[i]; // printf("i=%lld c[i]=%lld c[i-1]=%lld\n",i,c[i],c[i-1]); // printf("i=%lld now+cha=%lld\n",i,now[i]+cha);if(now[i]+cha>0){sum+=now[i]+cha;c[i]-=(now[i]+cha);c[wat[nowid].r+1]+=now[i]+cha;now[i]=0;}}for(ll i=1;i<=n;i++){ll cha=c[i]; // printf("now=%lld x=%lld cha=%lld\n",now[i],x,cha);if(now[i]+cha>0) return 0x7fffffffff; }return sum+x*t; } int main(){ // freopen("da.in","r",stdin); // freopen("ans.bf","w",stdout);scanf("%lld%lld%lld",&n,&m,&t);for(ll i=1;i<=n;i++){scanf("%lld",&p[i]);maxx=max(maxx,p[i]);}for(ll i=1;i<=m;i++){scanf("%lld%lld",&wat[i].l,&wat[i].r);}sort(wat+1,wat+m+1);for(ll i=1;i<=m;i++){if(!lef[wat[i].l])lef[wat[i].l]=i;}for(ll i=1;i<=n;i++)if(wat[lef[i-1]].r>=i){if(wat[lef[i-1]].r>wat[lef[i]].r)lef[i]=lef[i-1]; }ll l=0,r=maxx;while(l<r){ll len=(r-l);ll lmid=l+len/3,rmid=r-len/3;ll lnow=check(lmid),rnow=check(rmid); // printf("l=%lld r=%lld\n",l,r);if(lnow>=rnow) l=lmid+1;else r=rmid-1; ans=min(ans,lnow);ans=min(ans,rnow);} // printf("%lld\n",check(5));printf("%lld\n",ans); }