【0】README
0.1)本文旨在总结出表达式树的构建步骤, 其中还涉及到中缀转后缀表达式,以及如何计算 表达式树中的值;
0.2)本文源代码均为原创;
0.3) 其实, 实现一个简单的计算器, 也即求出中缀表达式的值,我们也可以用栈来实现, 参见 http://blog.csdn.net/pacosonswjtu/article/details/49225529 ; 此处给出 表达式树的实现 仅在于加深对表达式树的理解及它的应用;
【1】表达式树的相关概念
1.1)定义:表达式树的树叶是 操作数operand,比如常量或变量,而其他节点是操作符 operator;
1.2)对上图中的表达式进行遍历(先序+中序+后序)
- 先序遍历: + + a * b c * + * d e f g
- 中序遍历: a + b * c + ( d * c + f ) * g (这里要加上括号, 这也是我们为什么要采用 后缀或逆波兰记法 来表示 用户输入的运算表达式 以计算结果, 一句话,方便可靠)
- 后序遍历: a b c * + d e * f + g * +
- Attention)这里,我们没有给出源代码,因为这个先序,后序 or 中序 的源代码和二叉树遍历的源代码相差无几,这里只是了解下 表达式树的概念,并了解下用 树的遍历计算 表达式的值;
【2】如何构造一颗表达式树(表达式树的定义很关键,对于写我们的递归程序而言)
我们给出一种算法将后缀表达式转变为 表达式树:
- step1)用户输入中缀表达式, 我们首先将其转为后缀表达式;
- step2)我们将后缀表达式转为 表达式树的形式;
- step3)我们来计算该表达式树的计算结果是多少?
2.1 ) download source code: https://github.com/pacosonTang/dataStructure-algorithmAnalysis/tree/master/chapter4/p71_compute_expr_tree
2.2 ) source code at a glance:
2.2.1)expr_tree.c source code :
#include "stack.h"
#include "binary_tree.h"extern void infir_to_postfix();
extern int computeResult(int operand1, int operand2, int operator_);
extern ElementType compute_postfix();
extern Stack operand;
extern int isOperator(char ch);
extern int computeResult(int operand1, int operand2, int operator_);// building an expr tree for storing postfix expr
BinaryTree postfixToExprTree()
{ int value; BinaryTree* treeArray; int size;int index;ElementType *p;int i ;size = getTopOfStack(operand) + 1; //get the top of stack, and add 1 to compute size of the stacktreeArray = (BinaryTree*)malloc(size * sizeof(BinaryTree)); // alloc memory for treeArrayindex = 0; // set the index of treeArray 0 p = getArray(operand);i = 0;while(i < getTopOfStack(operand)){value = *(p+i++);if(value == ' ') // if the value equals ' ', continue continue;treeArray[index++] = createBinaryTree(value);// for every element need to build tree nodeif(isOperator(value)) // if the value belongs to operator, { index--; insertNode(treeArray[index-1], treeArray[index], 0); insertNode(treeArray[index-2], treeArray[index], 1);treeArray[index-2] = treeArray[index];index --;} // (treeArray+index++) = createBinaryTree(value);// if the value belongs to operand, push the element into the treeArray}return *treeArray;
}// preorder the tree
void printPreorder(int depth, BinaryTree root)
{ int i;if(root) { for(i = 0; i < depth; i++)printf(" "); printf("%c\n", root->value);printPreorder(depth + 1, root->left); printPreorder(depth + 1, root->right); // Attention: there's difference between traversing binary tree and common tree }else {for(i = 0; i < depth; i++)printf(" "); printf("NULL\n");}
}// postordering expression tree with operantors and operands to compute the result of these nodes
int postorder_compute_postfix_expr_tree(BinaryTree root)
{ int temp1;int temp2;if(isOperator(root->value)) { temp1 = postorder_compute_postfix_expr_tree(root->left); temp2 = postorder_compute_postfix_expr_tree(root->right); // Attention: there's difference between traversing binary tree and common tree return computeResult(temp1, temp2, root->value);}else return root->value - 48;
}int main()
{ BinaryTree bt;// 1.convert infix into postfix exprprintf("\n ====== convert infix into postfix expr ====== \n");infir_to_postfix(); // after this func is called over, we get the postfix of the expr// 2.convert postfix into the expression tree bt = postfixToExprTree();printPreorder(1, bt); //3.compute postfix expr stored in the expression treeprintf("the final result is : %2d \n", postorder_compute_postfix_expr_tree(bt));return 0;
}
2.2.2)binary_tree.c source code :
#include "binary_tree.h"// create a BinaryTree with root node
BinaryTree createBinaryTree(TreeElementType value)
{ BinaryTree t;t = (BinaryTree)malloc(sizeof(struct BinaryTree));if(!t) {Error("out of space, from func createBinaryTree"); return NULL;} t->left = NULL;t->right = NULL; t->value = value;return t;
}// make the BinaryTree empty
BinaryTree makeTreeEmpty(BinaryTree t)
{if(t){makeTreeEmpty(t->left);makeTreeEmpty(t->right); free(t);} return NULL;
}//insert a Tree node with value e into left child or right child of the parent
BinaryTree insert(TreeElementType e, BinaryTree parent, int isLeft)
{ BinaryTree node;if(!parent){Error("for parent BinaryTree node is empty , you cannot insert one into the parent node, from func insert"); return NULL;}node = (BinaryTree)malloc(sizeof(struct BinaryTree));if(!node) {Error("out of space, from func insert"); return NULL;}node->value = e;node->right = NULL;node->left = NULL;// building the node with value e overif(isLeft) { // the tree node inserting into left child of the parent if(parent->left) {Error("for parent has already had a left child , you cannot insert one into the left child, from func insert"); return NULL; }parent->left = node;}else { // the tree node inserting into right child of the parent if(parent->right) {Error("for parent has already had a right child , you cannot insert one into the right child, from func insert"); return NULL; }parent->right = node;} return node;
}//insert a Tree node into left child or right child of the parent
BinaryTree insertNode(BinaryTree node, BinaryTree parent, int isLeft)
{ if(!parent){Error("for parent BinaryTree node is empty , you cannot insert one into the parent node, from func insert"); return NULL;}if(!node) {Error("for the node inserted is NULL , so you cannot insert a NULL node, from func insert"); return NULL;} if(isLeft) // the tree node inserting into left child of the parent parent->left = node; else // the tree node inserting into right child of the parent parent->right = node; return node;
}// find the BinaryTree root node with value equaling to e
BinaryTree find(TreeElementType e, BinaryTree root)
{BinaryTree temp;if(root == NULL)return NULL;if(root->value == e)return root;temp = find(e, root->left); if(temp) return temp;elsereturn find(e, root->right);
}// analog print directories and files name in the BinaryTree, which involves postorder traversal.
void printPostorder(int depth, BinaryTree root)
{ int i;if(root) { printPostorder(depth + 1, root->left); printPostorder(depth + 1, root->right); // Attention: there's difference between traversing binary tree and common treefor(i = 0; i < depth; i++)printf(" "); printf("%c\n", root->value); }else {for(i = 0; i < depth; i++)printf(" "); printf("NULL\n");}
}
2.2.3)stack.h source code :
#include <stdio.h>
#include <malloc.h>#define ElementType int
#define EmptyStack -1
#define Error(str) printf("%s",str)
#define FatalError(str) printf("%s",str)
#define minStackSize 5struct Stack;
typedef struct Stack *Stack;int isFull(Stack s);
int isEmpty(Stack s);
Stack createStack(int);
void disposeStack(Stack s);
void makeEmpty(Stack s);
void push(ElementType e, Stack s);
ElementType top(Stack s);
void pop(Stack s);
ElementType top(Stack s);
int getTopOfStack(Stack s);
ElementType *getArray(Stack s);void printStack(Stack s);
void printStack_postfix(Stack s);struct Stack {int capacity;int topOfStack;ElementType *array;
} ;
2.2.4)binary_tree.h source code :
#include <stdio.h>
#include <malloc.h>#define TreeElementType char
#define Error(str) printf("%s",str) struct BinaryTree;
typedef struct BinaryTree *BinaryTree;BinaryTree createBinaryTree(TreeElementType); // this func is different from that in p70_preorder_binary_tree.c
BinaryTree makeTreeEmpty(BinaryTree);
BinaryTree insert(TreeElementType, BinaryTree, int);
BinaryTree insertNode(BinaryTree, BinaryTree, int);
BinaryTree find(TreeElementType, BinaryTree);
void printPostorder(int depth, BinaryTree root);// we adopt child-sibling notation
struct BinaryTree
{TreeElementType value;BinaryTree left;BinaryTree right;
};
2.2.5)stack.c source code :
#include "stack.h"int getTopOfStack(Stack s)
{return s->topOfStack;
}//return stack's array
ElementType *getArray(Stack s)
{return s->array;
}//judge whether the stack is empty or not
int isFull(Stack s)
{return s->capacity - 1 == s->topOfStack ? 1 : 0;
}//judge whether the stack is empty or not
int isEmpty(Stack s)
{return s->topOfStack == -1;
}//create stack with the head node
Stack createStack(int size)
{Stack s;s = (Stack)malloc(sizeof(struct Stack));if(size < minStackSize) {Error("stack size is too small, and creating stack with defualt size 5"); size = minStackSize;}if(s == NULL) {FatalError("out of space when allocting memory for stack s");return NULL;}s->array = (ElementType *)malloc(size * sizeof(ElementType)); if(s->array == NULL) {FatalError("out of space when allocting memory for stack's array ");return NULL;}s->topOfStack = -1;s->capacity = size; return s;
}//dispose stack
void disposeStack(Stack s)
{free(s->array);free(s);
}//pop all elements in the stack
void makeEmpty(Stack s)
{if(s->topOfStack == -1)Error("must create the stack first");while(!isEmpty(s))pop(s);
}//push the node with value e into the stack s
//attend that first moving ptr ,then executing push operation
void push(ElementType e, Stack s)
{ElementType *temp = s->array;if(isFull(s))Error("the Stack is full, push failure! "); else{s->topOfStack ++;s->array[s->topOfStack] = e; }
}// pop the node or element on the top of stack
//attend that first executing pop operation,then moving ptr
void pop(Stack s)
{if(isEmpty(s))Error("empty stack");else s->topOfStack --;
}// return the value of the top node in the stack
ElementType top(Stack s)
{if(!isEmpty(s)) return s->array[s->topOfStack];Error("the stack is empty from func top\n");return -1;
}//print value of element in the stack s
void printStack(Stack s)
{int i;if(isEmpty(s)){Error("empty stack");return ;}for(i=0; i<= s->topOfStack; i++) printf("%4d", s->array[i]);printf("\n");
}//print value of element in the stack s with postfix
void printStack_postfix(Stack s)
{int i;if(isEmpty(s)){Error("empty stack");return ;}printf("stack elements list: ");for(i=0; i<= s->topOfStack; i++) printf("%c", s->array[i]);printf("\n");
}
2.2.6)compute_postfix.c source code :
#include "stack.h"#define Size 100// refer to p50.c and put it into the same project
extern struct Stack;
typedef struct Stack *Stack;extern Stack operand; // operand is an extern variable defined in infixToPostfix
extern int isOperator(char ch);
extern void infir_to_postfix();
int computeResult(int operand1, int operand2, int operator_);int computeResult(int operand1, int operand2, int operator_)
{switch(operator_){case '+': return operand1 + operand2;case '*': return operand1 * operand2;default: return 0; break;}
}// compute final result of responding postfix
ElementType compute_postfix()
{Stack output;int i;ElementType *p;int value;int operand1;int operand2;output = createStack(Size); // create stack with length Sizei = 0;p = getArray(operand); // get operand->arraywhile(i < getTopOfStack(operand)){value = *(p+i++);if(value == ' ')continue;if(isOperator(value)){operand1 = top(output);pop(output);operand2 = top(output);pop(output);value = computeResult(operand1, operand2, value);push(value, output);continue;}push(value - 48, output);}return getArray(output)[0];
}
2.2.7)infixToPostfix.c source code :
#include "stack.h"#define Size 100// refer to p50.c and put it into the same project
extern struct Stack;
typedef struct Stack *Stack;
Stack operand; // declaration of Stack operand
int isOperator(char ch);
void infir_to_postfix();//compare operator's priority between ch1 and ch2, return -1, 0 or 1
int priorityBigger(char ch1, char ch2)
{int size = 8;char operator_[]={ '(', ')', ' ', '+', '-', ' ', '*', '/'};int index1, index2;int i;if(ch1 - ch2 == 0)return 0;for(i = 0; i< size; i++)if(operator_[i] == ch1)index1 = i; else if(operator_[i] == ch2)index2 = i; index1 -= index2;if(index1 == 1 || index1 == -1) return 0;else if(index1 > 1)return 1;else if(index1 < -1)return -1;
}//judge whether the ch is operator or not ,also 1 or 0
int isOperator(char ch)
{int size;char operator_[]={'(', '+', '-', '*', '/', ')'};int i;size = 6;for(i = 0; i < size; i++)if(ch == operator_[i])break;return i == size ? 0 : 1;
}//convert a part of str with length len into responding element value
ElementType strToElement(int *str, int len)
{int i;int value;i = value = 0;while(i < len){value += *(str+i) - 48;if(++i == len)break;value *= 10;}return value;
}// convert infix expr into postfix expr
//for operand and operator cannot be in the same type ,we treat them as char and split them with space
void infixToPostfix(Stack s1, Stack s2,char *expr)
{char ch; int i;char top_t; int flag; i = 0; flag = 0; while((ch = *(expr+i++)) != '\0') { if(ch == ')'){// if ch equals ')', pop elements in stack s2 between '(' and ')' into stack s1while((top_t = top(s2)) != '(' ) { push(top_t, s1);push(' ', s1);pop(s2);} pop(s2); // pop '(' in stack s2 continue;}if(isOperator(ch)) // isOperator is true { if(ch == '(') {push(ch, s2); // push '(' into operator stack s2flag = 1;continue;} while((top_t = top(s2)) != -1 && priorityBigger(top_t, ch) >= 0 && flag ==0) { pop(s2); push(top_t, s1);push(' ', s1); } push(ch, s2); // push operator into operator stack s2 flag = 0;}else {push(ch, s1); push(' ', s1); // we treat them as char and split them with space}}// pop element in s2 and push it into s1while(!isEmpty(s2)) { push(top(s2), s1);push(' ', s1);pop(s2);}
}// read expr from console till '\n' and we just only focus on '+' and '*';
// postfix expression like 6 5 2 3 + 8 * + 3 + *
char *read()
{char *temp;int len; char ch;temp = (char*)malloc(Size * sizeof(char));len = 0; while((ch = getchar()) != '\n') { if(ch == ' ')continue;temp[len++] = ch; }temp[len] = '\0';return temp;
} // there are 2 stacks, that's operand and operator;
//works list
//1.read expr, 2.convert the expr from infix to postfix, 3./*
int main()
{ Stack operand;Stack operator_;operand = createStack(Size);operator_ = createStack(Size);// convert infix into postfix exprinfixToPostfix(operand, operator_, read()); printStack_postfix(operand);// compute postfix exprreturn 0;
}
*/void infir_to_postfix()
{ Stack operator_;//create stack operand and operator_operand = createStack(Size);operator_ = createStack(Size);// convert infix into postfix exprinfixToPostfix(operand, operator_, read()); printStack_postfix(operand);
}